
R. Tomcin & D. Sibbing & L. Kobbelt / Efficient Enforcement of Hard Articulation Constraints

Appendix A: Velocity Verlet Time Integration

Let the position of a rigid body be xxx and the velocity vvv with
respect to its center of gravity, the orientation qqq (represented
by a unit quaternion) and the angular velocity ωωω. Let m be
its mass and I be its orientation dependent inertia tensor. The
sum of all external forces and torques acting on the body due
to gravity and springs are denoted fff and τττ, respectively.

Quantities at the beginning t = t(l) and end t(l+1) =

t(l) + h of a time step of length h are denoted by ∗(l) or
∗(l+1), respectively. To achieve more accurate results, we
slightly relaxed the restrictions mentioned in Section 3 and
show how to replace the forward Euler time integration of
[GBF03] with a more accurate Velocity Verlet method.

Let qqq(4ωωω) represent an incremental rotation and ◦ be
the quaternion multiplication. The linear and angular ac-
celerations are obtained from the equations of motion σσσ =

I−1(τττ− (ωωω× Iωωω)) and aaa = fff
m . The Verlet method is given

by first updating the body’s location with

xxx(l+1) = xxx(l)+hvvv(l)+
h2

2
aaa(l) (9)

qqq(l+1) = qqq(hωωω
(l)+

h2

2
σσσ
(l))◦qqq(l) (10)

and then the velocities with

vvv(l+1) = vvv(l)+
h
2

(
aaa(l)+aaa(l+1)

)
(11)

ωωω
(l+1) = ωωω

(l)+
h
2

(
σσσ
(l)+σσσ

(l+1)
)
. (12)

We reformulated this update to meet the requirements of
the implicit contact- and collision distinction explained in
[GBF03] and Section 3. In particular, all external forces
should be applied in the linear and angular velocity update
and not appear in the position and orientation updates.

The restructured Verlet time integration for a single body
is obtained by reformulating equations (9) to (12) in terms
of

vvv− = vvv− h
2

aaa , vvv+ = vvv+
h
2

aaa

and

ωωω− = ωωω− h
2

τττ , ωωω+ = ωωω+
h
2

τττ ,

which leads to the following 3 step procedure:

1. Update velocities by applying external impulses

vvv(l)+ = vvv(l)− +h aaa(l)

ωωω
(l)
+ = ωωω

(l)
− +h I(l)

−1
τττ
(l)

2. Update body locations (done frequently during joint cor-

rections)

xxx(l+1) = xxx(l)+hvvv(l)+

qqq(l+1) = qqq

(
hωωω

(l)
+ −

h2

2
I(l)
−1(

ωωω
(l)× I(l)ωωω(l)

))
◦qqq(l)

(13)

3. Update velocities at the end of the time step

vvv(l+1)
− = vvv(l)+

ωωω
(l+1)
− = ωωω

(l)
+ +

h
2

(
σσσ
∗(l)+σσσ

∗(l+1)
)

The angular acceleration σσσ
∗ does not include torque directly,

meaning that

Iσσσ
∗ =−ωωω× Iωωω =−

(
ωωω+−

h
2

τττ

)
× I
(

ωωω+−
h
2

τττ

)
This introduces a velocity update at the end of each time
step in addition to the application of external impulses (see
Figure 2). Note that σσσ

∗(l+1) in the velocity update is not
known and needs to be determined with Newton’s method
in a similar way as the original Verlet integration described
in [KE04].

We neglect torque-dependent terms in the orientation up-
date (we use ωωω

(l)
+ instead of ωωω

(l) in Equation (13)), because
of a more reliable convergence of joint corrections for cases
involving strong rotational motors. This way, up to 6 times
larger simulation step sizes could be chosen for the trike
and Strandbeest examples. At the same time, we still en-
joy some of the benefits of the accuracy of Verlet integra-
tion such as long-term energy conservation and momentum
conservation. Although not as accurate as the Moser Veselov
integrator [MV91] that conserves both energy and momen-
tum completely as used by [SKV∗12], our simulator is more
general in the sense that it features different coefficients of
restitution and sustained drift-free articulation and contact
constraints.

Appendix B: A heuristic for splitting the kinematic graph

To show, that our splitting strategy yields linear time-
complexity, we define the bandwidth β(A) as in [BBK05]:

β(A) := max
1≤i≤n

{βi(A)} , βi(A) := i− min
1≤ j≤i

{ j|Ai j 6= 0}

Let the number of original constraints attached to each of
the subparts k be zk. The zk can be freely chosen, as long
as they add up to the total number of constraints of the
original body. The rows corresponding to extra joints have
the largest bandwidth (bottom row in Figure 4). Keeping in
mind that extra joints constrain 6 degrees of freedom this
means β(A) ≤ 11 + 2 · zmax with zmax = max1≤k≤nP(zk).
Both the factorization and the solution has therefore linear
time-complexity. Note, that this result can easily be extended
to all multibody systems with a tree-like kinematic graph.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



R. Tomcin & D. Sibbing & L. Kobbelt / Efficient Enforcement of Hard Articulation Constraints

In practice, it is desirable to find a splitting strategy that max-
imizes performance. We found, that in contact-heavy sce-
narios more computation time of our simulator is spent on
solving the system than factorizing it. Therefore the work-
load is roughly proportional to the number of off-diagonal
matrix entries nM . Considering again the different kinds of
matrix entries (sorted by color as in Figure 4 (bottom row)),
the number of off-diagonal matrix entries can be written for
nP ≥ 2 as

nM =

black︷ ︸︸ ︷
nP

∑
k=1

zk(zk−1)+

red︷ ︸︸ ︷
30(nP−1)+

green︷ ︸︸ ︷
72(nP−2)

+12(z0 + znP)+24
nP−1

∑
k=2

zk︸ ︷︷ ︸
blue

(14)

We allow breaking apart the constraints between a pair of
bodies. For example, joints 3 and 4 in Figure 4 (bottom row)
might be attached to the same pair of bodies in the original
configuration. For a joint with 6 constraints that is cut in half,
this causes a maximum of 3 ·3+3 ·3 = 18 additional matrix
entries. Note, that although this introduces a small closed
kinematic loop, there is no fill-in during the factorization.
For this reason we neglect this additional term and propose
a heuristic to minimize nM .

The number of matrix entries (14) can be written as

nM =

(
nP−1

∑
k=2

z2
k +23zk

)
+ z2

0 + z2
nP +11(z0 + znP)

+102nP−174 .

Minimizing this function is an integer programming prob-
lem. Except for the obvious difference between inner parts
and the two end parts, the zk should be chosen as equal as
possible for minimal nM . Therefore we constrain the num-
ber of inner (and outer) constraints per part to only differ by
1 at most. nM is reformulated in terms of the total number of
constraints n = ∑

nP
k=1 zk, the number of constraints of inner

parts m=∑
nP−1
k=2 zk and the number of inner parts p= nP−2.

With the ceil and floor functions d·e and b·c, let a inner parts
contain zlower = bm

p c, and the others zlower + 1 constraints.
We then have

z0 + znP = n−m

z2
0 + z2

nP = d (n−m)2

2
e

nP−1

∑
k=2

z2
k = az2

lower +(p−a)(zlower +1)2

= p(bm
p
c+1)2− (p−m mod p︸ ︷︷ ︸

a

)(2bm
p
c+1) .

nM can be written in a form that yields a lower bound

f (m, p)≤ nM :

nM =
1
2

n2 +11n+
(

1
p
+

1
2

)
m2 +12m−mn+102p︸ ︷︷ ︸

f (n,m,p)

+γ

with γ ∈ [0,d p
4
e+1]

A splitting strategy can be obtained by minimizing f for a
given n with respect to m and p, yielding

p∗ =
n−12√

102
−2

m∗ =
(n−12)p∗

p∗+2
.

We found, that this strategy was optimal for n ∈ [38,218].
For n > 78, we noticed that 16 constraints for the 2 outer
parts and 10 for the inner parts seems to always be opti-
mal. To get the maximum number of inner parts with 10
constraints, p needs to be b m

10c or b m
10c+1.

Our heuristic to find p and m that minimize nM can be
given by the following algorithm that takes n as input:

if n < 27 // no split
p = -1
m = 0

else if n < 37 // one split
p = 0
m = 0

else if n < 219 // n < 79 should work, too
p = n==37 ? 1 : round((n-12)/sqrt{102}-2)
m = (n-12)*p/(p+2)

else
m = n-32
p = floor(m/10)
if p + 1 - m mod (p+1) < m mod p

p = p + 1
end if

We verified the optimality of this heuristic empirically for
n < 108. A thorough proof, however, might be exaggerated
at this point, since nM is not a very accurate performance
measure anyway.

Appendix C: An alternative to matrix modification for a
single contact

There exist two closely related versions of the Cholesky de-
composition of a symmetric positive definite matrix A ∈
RnC×nC . The first is defined as

A = GGT , (15)

where G is a lower triangular matrix and the second is given
by

A = LDLT . (16)

L is also a lower triangular matrix, but has ones on the diag-
onal and D is a diagonal matrix.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



R. Tomcin & D. Sibbing & L. Kobbelt / Efficient Enforcement of Hard Articulation Constraints

We show how to add na asymmetric rows and columns to
the matrix A (as for the case of Coulomb’s model for dy-
namic friction) based on an existing Cholesky decomposi-
tion of A in the form (15) or (16). For our cases, na will not
be greater than three, because we only insert one (frictional)
contact at a time.

Since we add rows/columns to the bottom/right of A, the
decomposition does not need to be changed explicitly. In-
stead, this change can be emulated during the solution pro-
cess. All this is done in a block-based manner, handling all
na constraints at once.
For our derivations, we denote modified parts of the system
matrix and the decomposition with ∗̄. The additional na con-
straints yield the new system matrix

Ā =

(
A Ā1,2

ĀT
2,1 Ā2,2

)
.

The dimensions of the new parts are Ā2,1 ∈ RnC×na , Ā1,2 ∈
RnC×na and Ā2,2 ∈ Rna×na .

First version with A = GGT

The modified decomposition reads(
A Ā1,2

ĀT
2,1 Ā2,2

)
︸ ︷︷ ︸

Ā

=

(
G 0

ḠT
2,1 1na

)
︸ ︷︷ ︸

Ḡ

(
GT Ū1,2
0 D̄2,2

)
︸ ︷︷ ︸

Ū

(17)

Note, that the block D̄2,2 ∈ Rna×na is not a diagonal matrix
and asymmetric in general, since this is actually a block-
based LU decomposition for asymmetric matrices, mixed
with a usual Cholesky decomposition. Because the addi-
tional rows/columns are added to the bottom/right of Ā, the
factor G does not change. For a purely symmetric modifi-
cation method that is able to place constraints at arbitrary
positions in the matrix, see [DH05].
Matrix equations for the blocks Ā1,2, Ā2,1 and Ā2,2 can be
isolated from (17) to compute Ū1,2, Ḡ2,1 and D̄2,2 once for
every contact:

GŪ1,2 = Ā1,2 ⇒ Ū1,2 (18)

GḠ2,1 = Ā2,1 ⇒ Ḡ2,1 (19)

ḠT
2,1Ū1,2 + D̄2,2 = Ā2,2 ⇒ D̄2,2 (20)

Because G is a lower triangular matrix, computing Ū1,2 and
Ḡ2,1 from (18) and (19) amounts to na forward substitutions
each. The computation of D̄2,2 in (20) involves a sparse mul-

tiplication ḠT
2,1Ū1,2 and a subtraction.

The original, unmodified linear system Axxx = bbb can be solved
with a forward substitution Gyyy = bbb, followed by a back sub-
stitution GT xxx = yyy. To solve the modified system, we need to
first do a forward substitution of(

G 0
ḠT

2,1 1na

)(
yyy1
yyy2

)
=

(
bbb1
bbb2

)

and then a back substitution of(
GT Ū1,2
0 D̄2,2

)(
xxx1
xxx2

)
=

(
yyy1
yyy2

)
.

More precisely, the overall solution procedure to obtain xxx1
and xxx2 consists of the following steps:

1. compute yyy1 by forward substitution of Gyyy1 = bbb1

2. xxx2← D̄−1
2,2

(
bbb2− ḠT

2,1yyy1

)
︸ ︷︷ ︸

yyy2

3. compute xxx1 by back substitution of GT xxx1 = yyy1− Ū1,2xxx2

Second version of decomposition with A = LDLT

In case the decomposition exists in the form A = LDLT ,
we can solve the modified system in a similar manner. The
modified decomposition is given by(

A Ā1,2

ĀT
2,1 Ā2,2

)
=

(
L 0

L̄T
2,1 1na

)(
D 0
0 D̄2,2

)(
LT Ū1,2
0 1na

)
This time, the matrices Ū1,2, L̄2,1 and D̄2,2 can be obtained
analogously from

LDŪ1,2 = Ā1,2 ⇒ Ū1,2

LDL̄2,1 = Ā2,1 ⇒ L̄2,1

L̄T
2,1DŪ1,2 + D̄2,2 = Ā2,2 ⇒ D̄2,2

and the solution procedure reads:

1. compute yyy1 by forward substitution of Lyyy1 = bbb1

2. xxx2← D̄−1
2,2

(
bbb2− L̄T

2,1yyy1

)
︸ ︷︷ ︸

yyy2

3. compute xxx1 by back subst. of LT xxx1 = D−1yyy1− Ū1,2xxx2

Permutation

Due to fill-in minimization, the given factors G (or L and
D, respectively) are based on a reordered version A of the
original matrix A∗, that can be denoted in terms of a permu-
tation matrix P:

A = PA∗PT

For this reason, the additional matrix parts Ā1,2 and Ā2,1
must be obtained by permuting their original counter-parts
before computing Ū1,2, L̄2,1 and D̄2,2:

Ā1,2 = PĀ∗1,2
Ā2,1 = PĀ∗2,1

The given right-hand side bbb∗1 is permuted accordingly with
bbb1 = Pbbb∗1 . To obtain the upper part xxx∗1 of the final solution,
the inverse permutation is used:

xxx∗1 = PT xxx1

Of course, the reordering does not need to be performed ex-
plicitly. Instead, it is achieved by accessing the elements in
the right order, which amounts to a simple book-keeping.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


