
A Framework for Vision-based Mobile AR Applications
Jan Robert Menzel

RWTH Aachen University
Aachen, Germany

menzel@cs.rwth-aachen.de

Michael Königs
RWTH Aachen University

Aachen, Germany
Michael.Koenigs@rwth-aachen.de

Leif Kobbelt
RWTH Aachen University

Aachen, Germany
kobbelt@cs.wrth-aachen.de

ABSTRACT
This paper analyzes the requirements for a general purpose
mobile Augmented Reality framework that supports expert
as well as non-expert authors to create customized mobile
AR applications. A key component is the use of image-
based localization performed on a central server. It further
describes an implementation of such a framework as well as
an example application created in this framework to demon-
strate the practicability of the described design.

Author Keywords
Augmented Reality Framework, Image-based Localization,
Authoring, Location-based Gaming

ACM Classification Keywords
H5.1. Information interfaces and presentation: Artificial,
augmented, and virtual realities

General Terms
Performance, Design, Experimentation

INTRODUCTION
Mobile Augmented Reality (AR) applications can be found
in a wide variety of use-cases, e.g. gaming [2], learning,
edutainment, tourist guides [1] and pedestrian navigation
[4]. Many of these scenarios can be based on the same
application architecture and middle-ware as they share the
same basic requirements. Our goal is to analyze these
requirements and to present a unified framework that sup-
ports experts with programming skills as well as non-expert
authors who cannot program to build such kind of applica-
tions. This distinguishes our framework from previously
described domain specific frameworks (e.g. [10]).

FRAMEWORK REQUIREMENTS
In this section we discuss the typical requirements of a

state-of-the-art AR framework that can be used to imple-
ment different kinds of applications. First we analyze the
technical aspects such as the requirements to the hardware,
sensors and localization technique. Next, we discuss how
the framework can support the author with the application
development to leverage the possibilities of the technology.

Hardware and Sensors
Since modern smartphones are becoming more powerful
and are being equipped with a wide variety of sensors a
modern AR framework should only rely on these commod-
ity devices and the integrated sensors and not require
specialized hardware like previously presented systems
[2,5]. This leaves us in most cases with GPS, a digital com-
pass, accelerometer, gyroscope and a camera as available
sensors.

Localization Method
GPS provides a level of accuracy that is not accurate
enough for convincing AR applications and in addition only
works for outdoor scenarios [3]. Cell tower localization
while having the advantage of working indoors provides an
even less accurate localization than GPS. The compass,
gyroscope and accelerometer can only provide information
about the devices relative orientation and movements but
not an absolute positioning.

To provide accurate localization for indoor and outdoor sce-
narios, the camera can be used as an additional sensor.
Image-based localization for Augmented Reality is not a
new approach, but in most cases it is done with markers
which have to be placed in the real environment [8]. Such
modifications of the environment are not always possible as
the area that should be used is too large or not controlled by
the application author. Also vandalism or aesthetic reasons
can prohibit the use of markers.

Marker-less image-based localization requires a previously
built image database of the environment, which is easy to
create with a consumer camera for small areas. For large
scale scenarios, projects like Google Streetview have
proved the practicability of automatic acquisition of image
databases of whole cities and even countries [11].

Image-based localization implemented on the smartphone
does not scale very well due to memory and CPU limita-
tions. Hence, when supporting large areas or a high level of
detail through the same localization infrastructure the re-
quired database becomes too large to be practically handled
on mobile devices. Implementing the localization on a cen-
tral server helps to reduce the memory and computational
requirements of the client and also reduces the energy con-
sumption. Updating the database becomes easier as well.

Outdoor scenarios are more problematic than indoor loca-
tions for image-based localization as weather, daytime and
seasons have a considerable influence on the appearance
and the lighting conditions. On the other hand a GPS signal
can be used to narrow down the search radius outdoors
when sent as additional data to the server. Indoor localiza-
tion is easier as the environment is more static but no rough
GPS location can be provided to the server to assist the im-
age-based localization. We suggest to use as much addi-
tional sensor data as possible to support the server but not
to rely only on these sensors.

Relying on an image-based localization server distinguishes
our framework from most marker-based or GPS-based
frameworks (e.g. [8,10,12]) and applications.

Application Toolbox
To handle the aforementioned different AR application sce-
narios, the client has to be able to display virtual objects
within a live video stream, provide the possibility of inter-
acting with those objects by selecting them and support ap-
plication dependent menus (see Figure 1). With an addi-
tional internal application state modeled as a state machine,
these basic building blocks are sufficient to implement loca-
tion based story telling, information systems, tourist guides
and even point-and-click like adventure games which moti-
vate the user to go to real locations to interact with virtual
characters and even implement a virtual inventory.

Figure 1. The AR and UI overlays of our mobile client

Application Authoring
The application framework should provide a higher level of
abstraction such that even non-expert users can implement
mobile AR applications and games. Experts with program-
ming skills should be given further options to implement
more specialized functionalities.

The basic logic should thus be implemented in a simple
cross-platform scripting language to allow experts to imple-
ment more advanced AR applications without low level
system programming. This also minimizes the OS specific
parts of the client implementations which is useful in the
heterogeneous smartphone market. Using the Python
programming language for this purpose was suggested by
Wang et al.[12], however, their approach still required pro-
gramming skills from the authors. The authoring tools for
non-expert users implemented as desktop applications can
even include a simulator for the AR programs as the logic is
implemented in platform independent scripts.

EXAMPLE FRAMEWORK OVERVIEW
We implemented a general mobile AR framework based on
our requirement analysis including the following compo-
nents (see Figure 2):

• A smartphone based client without additional hardware

• A remote image-based localization server

• Desktop authoring tools

• A general game logic implemented as a LUA script

Figure 2. General framework overview: The dashed,
green arrows are showing the application creation pipe-

lines, the black solid ones the run-time data-flow.

In the following sections, we will discuss each component
as we implemented them in our example framework and
how they interact.

Mobile Client
The mobile client was implemented on iOS. The applica-
tion logic for simple AR (gaming) scenarios using a state
machine, dialog trees and point-and-click style interactions
with virtual characters and objects was implemented as a
LUA script. The actual application content (states of the
state machine, objects, dialogs etc.) was authored with our
tools (see below). More complex scenarios can be imple-
mented by exchanging or extending this underlying logic-
script without modifying the iOS application, while simpler
modifications only require to change the content file which
does not require any programming skills at all. The LUA

scripting language was chosen as it is based on a cross-plat-
form, open-source interpreter which does not need many re-
sources and is thus well suited for mobile applications.

The responsibility of the client is to read sensor input (cam-
era, compass, GPS and gyroscope), display the AR overlay
rendered in OpenGL ES, run the scripting interpreter and
communicate with the localization server. Since the
applications are implemented in client-independent scripts,
additional clients for other mobile platforms can be easily
developed with a minimum of duplicated work.

Server-based Localization
The localization component in our framework was based on
a localization server that manages a database of geotagged
street level photos. A query image is efficiently matched
against this database using an inverted index [6,9] and the
original location of the highest-ranked spatially verified
image is the basis for the returned location.

Depending on the application scenario, this location can be
the real world global position or a logical application-de-
pendent location. For example our test game required the
player to find a bakery. As most bakeries belong to a small
number of chains, we added the bakeries the user would
most likely visit to the database, but also a number of com-
pany logos of these chains and connected all of these im-
ages to the same 'logical location'. This way we can support
correct localization (from the game logic point of view)
even at places the author did not expect the players to visit.

Often for location-based or Augmented Reality applications
the precise orientation is also not needed but just the logical
location with respect to the actual application logic (e.g. 'in
front of a bakery and looking at the store' instead of a real
world position). In this case the server can handle the logi-
cal location look-up for the client.

In our experiments the transmission time of the images over
a mobile internet connection was the actual performance
bottleneck (~4s over 3G), not the image matching on the
server (~0.5s). To reduce the transmission time, we send a
scaled down (640x480) JPEG compressed image. The fea-
ture extraction is handled by the server because usually the
images are smaller than the compressed SIFT descriptors
(61kb vs. 401kb on average, tested for 607 query images
from the user study). From the features, visual words are
derived to speed up the matching [9]. The data needed for
transmission could be reduced by calculating the visual
word assignments on the client and just transmitting those
(~1.6kb). However, the memory requirements are too high
for current smartphones (~500MB for the visual word quan-
tization index alone in our test setup).

Authoring Tools
In our cross-platform authoring tools the non-expert user
can add new virtual characters or objects and link them to
real world locations. For each character a set of dialog trees
can get created and edited by placing text boxes in a visual

editor and connecting answer options to responses of the
character (see Figure 3). The end nodes of a dialog tree can
trigger events of the game, for example moving characters
to other locations, editing the virtual inventory of the player
or unlocking additional dialog trees.

Figure 3. The desktop authoring tool used for managing
the dialog trees.

Besides conversation, the author can also model other ac-
tions the player can perform on virtual characters or objects.
For example the author can define a 'pick up', 'look at' or
'use object' action that can get connected to different events.

We also included basic authoring functionality into the
mobile iOS client to extend the dialog trees with additional
options on the move. The mobile authoring is only limited
by the smaller screen size of the smartphone as the applica-
tion content can be altered on the fly and could also be
uploaded from the client to a server and thus be shared with
other users.

Figure 4. UI and AR view of our game: The user can
choose an action (e.g. 'talk to', 'view at') and then select

a virtual character or object in the AR see-thru view.

EXAMPLE APPLICATION
To test our framework, we developed a sample application
that is intended as a pervasive game type tourist guide in
the city center of our home town. Designed as a mixture of
a classical guide and a game it has some elements of a clas-
sical 'point-and-click' adventure while being mostly linear
with respect to the locations the player has to visit.

Game Description
The game story is set during the construction of the Aachen
cathedral in the middle-ages. The player has to help orga-
nizing the funding for the construction of the building by
talking to virtual characters (see Figure 4) and visit impor-

tant historical places of the city. During the game he/she
will also learn about the legend of the construction.

The design goal of the game was to guide a tourist around
the city from one interesting place to the other and to tell a
background story of the city though the virtual characters.

User Study
To evaluate the appropriateness of the user-interface, the lo-
calization interface and accuracy as well as the success of
telling a story this way, we conducted a user study. In total
10 persons of various occupations participated in the test. In
addition to the smartphone the users were also equipped
with a Garmin eTrax Vista GPS that logged their movement
during the study. This device was chosen because it has a
more accurate GPS positioning than current phones. Our
goal was to test if image-based localization can compete
with GPS even assuming optimal conditions in favor of
GPS as we expect the quality of smartphone GPS sensors to
improve up to the quality of current dedicated GPS devices
in the future. Note that in our user study we limited our-
selves to just use the photo as the localization input and not
to send additional information as proposed earlier. Our mo-
tivation for this was to to test the robustness of the image-
based localization approach in case no GPS signal is avail-
able. This would always be the case in indoor scenarios.

While the localization worked technically quite well and
was even outdoors more accurate than the GPS track
recorded in parallel, we learned that users not familiar with
image-based localization tend to photograph other land-
marks than we had expected. As this localization technique
needs a dense and overlapping coverage by photosgraphs,
our initial database contained mostly whole building fa-
cades. Some users however photographed primarily street
signs and similar small features for the localization. Adding
images of those objects fixed all localization problems.

The overall feedback by the users was positive. While 8
participants had experiences with smartphones and also 8
participants with point-and-click adventure games, only two
test players had previous experiences with AR applications.
However, no one had problems interacting with the UI or
the virtual characters. The presentation of a city guide in the
form of an interactive AR game was well received and all
participants would use this kind of tourist guide again.

CONCLUSION AND OUTLOOK
We analyzed the general requirements of a flexible AR
framework and proposed a set of techniques and tools to
meet these. A sample application based on this framework
demonstrated that our goal was met from a technical point
of view. A user study showed that the resulting game, user
interaction methods and localization techniques work well
both from a technical, as well as a usability point of view.

The presented framework proved to be flexible enough to
be the basis for different applications. Using our tools, it
was possible to create a basic prototype of a campus guide /

interactive information system within one day including the
creation of an image database for localization.

Vision based localization proved to be robust and accurate
enough for general location-based and AR applications. We
used the localization server not only to detect actual posi-
tions, but also classes of locations based on shared features
in the form of very similar looking bakeries of the same
company. This idea can be extended to add object detection
to the server and provide localization as well as object
detection within the same framework.

Placing the localization component on a remote server
allows for easy updates of the database as well as the
matching technique: In later tests with our framework the
localization server was replaced by an implementation of
Sattler et al.[7] using the same client-server interface, so no
changes were needed on the iOS client. This technique gave
us a median localization accuracy of less than 1.3 meters.

REFERENCES
1. Bay, H., Fasel, B., Gool L.: Interactive Museum
Guide: Fast and Robust Recognition of Museum Objects.
In Proc. Int. Workshop on Mobile Vision, 2006

2. Herbst, I. Braun A. McCall R. Broll W: Time-
Warp: Interactive Time Travel with a Mobile Mixed Reali-
ty Game. Mobile HCI, 2008

3. Jacob, J., Coelho, A.: Issues in the development of
location-based games International Journal of Computer
Games Technology, 2011

4. Li, M., Mahnkopf, L, Kobbelt, L.: The Design of a
Segway AR-Tactile Navigation System. Pervasive, 2012

5. Pac-Manhattan - http://www.pacmanhattan.com/

6. Philbin J., Chum O., Isard M., Sicic J., Zisserman
A.: Object Retrieval with Large Vocabularies and Fast
Spatial Matching. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2007

7. Sattler T., Leibe, B. Kobbelt, L.: Fast Image-Based
Localization using Direct 2D-to-3D Matching. ICCV,2011

8. Schmalstieg D., Wagner D.: Mobile Phones as a
Platform for Augmented Reality. Proceedings of the IEEE
VR 2008 Workshop on Software Engineering and Archi-
tectures for Realtime Interactive Systems, 2008

9. Sivic, J., Zissermann, A.: Video Google: A Text
Retrieval Approach to Object Matching in Videos. ICCV,
2003

10. Tutzschke J, Zukunft O.: FRAP: A Framework for
Pervasive Games. EICS, 2009

11. Vincent, L.: Taking Online Maps Down To Street
Level. IEEE Computer 40(12): 118-120, 2007

12. Wang, Y., Langlotz, T., Billinghurst, M., Bell, T.:
An Authoring Tool for Mobile Phone AR Environments.
In Proc. New Zealand Computer Science Research Student
Conference, 2009

http://www.pacmanhattan.com/

