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Results of Multi-Layer Dual Structures 
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Results of Multi-Layer Dual Structures 
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A L P I N E H U T  
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Conclusion 

• What is VTPI? 

– A variational formulation of tangent plane intersection 

• Guided intersections of several planes 

• Useful for geometric problems (e.g. mesh planarization) 

• Solved by global optimization (freely available solvers) 

•  What is VTPI not? 

– A “fix” to topological issues involved in planar meshing 

• Degeneracies will occur where necessary, e.g. concave (or 
degenerate) hexagons in hyperbolic surface regions 

• Energies can sometimes be used to shift such effects … 
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Limitations & Discussion 

• Output depends on input tessellation and energy 
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Limitations & Discussion 

• Output depends on input tessellation and energy 

– energies can partly shift some effects on the mesh 
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Limitations & Discussion 

• Output depends on input tessellation and energy 

– Same tessellation, same topology, different functional 
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Limitations & Discussion 

• Output depends on input tessellation and energy 

– Same tessellation, same topology, different functional 
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Normal Smoothness Element Fairing 
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The End 

Thank you for your attention! 
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