
Extracting consistent and manifold interfaces

from multi-valued volume data sets

Stephan Bischoff, Leif Kobbelt

Lehrstuhl für Informatik 8, RWTH Aachen, 52056 Aachen
Email: {bischoff,kobbelt}@informatik.rwth-aachen.de

Abstract. We propose an algorithm to construct a set of interfaces that
separate the connected components of a multi-valued volume dataset.
While each single interface is a manifold triangle mesh, two or more in-
terfaces may join consistently along their common boundaries, i.e. there
are no T-junctions or gaps. In contrast to previous work, our algorithm
classifies and removes the topological ambiguities from the volume before
extracting the interfaces. This not only allows for a simple and stable ex-
traction algorithm, but also makes it possible to include user constraints.

1 Motivation and previous work

Let there be a three-dimensional voxel grid with one (tissue) label per voxel. Our
goal is to extract the interfaces between all adjacent tissues as triangle meshes,
i.e. the result is a set of triangle meshes each separating voxels of two differ-
ent tissue types. These meshes can then be used in downstream applications,
e.g. active contour models [1]. Of course, we want to guarantee certain quality
properties:

1. Each triangle mesh should be a subset of a 2-manifold (in particular we allow
it to have have a boundary, and the boundary can touch itself).

2. The boundaries of the triangle meshes should consistently fit together, i.e.
no gaps, T-junctions or other artifacts should occur.

Unfortunately the above problem is ill-posed: Consider four voxels joining along
a common edge and let there be two tissue types A and B such that the two pairs
of two diagonally opposing voxels have the same tissue type. If the extraction
algorithm simply extracts the interface between tissue A and B, we get a non-
manifold reconstruction along the common edge. The problem becomes even
worse when voxels of different tissue types join at a common vertex. This is the
reason why a naive generalization of the standard Marching Cubes algorithm
does not produce valid results.

In this work we present a simple and efficient algorithm that solves the above
problem. It does so by repairing the ambiguous voxels in the voxel grid before
extracting the meshes. This not only leads to a very simple extraction algorithm
but furthermore, the user can easily specify additional constraints, like e.g. that
tissues A and B should always be separated by a layer of tissue C. Our algorithm
is hence also able to incorporate a-priori knowledge and thus compensate for
noise that might be present in the raw data.



Previous work There are a number of approaches that (partly) solve the above
problem. Reitinger [2] uses a domain subdivision-strategy but cannot guarantee
that no singularities occur. The algorithm presented by Hege [3] produces guar-
anteed quality output but is very complex in terms of analyzing configurations
and size of lookup tables. Müller [4] presents a method based on simplices which
in general produces arbitrary complexes instead of manifolds. All these meth-
ods have in common that they try to fix the extraction algorithm such that it
can handle ambiguous cases. In contrast, our algorithm simply fixes the volume
before extraction, so the extraction algorithm is kept simple.

2 Method

Let V be a set of voxels and let ∂V be the set of V ’s boundary
vertices, edges and faces. We say that an edge e is critical in ∂V ,
if it is contained in four pairwise distinct faces of ∂V . Likewise a
vertex v is critical in ∂V if it either is the end-vertex of a critical
edge in ∂V or if it belongs to the singular configuration depicted
to the right. Hence critical edges and vertices represent the non-
manifold parts of ∂V . Now let Vi the set of voxels labelled i.
Usually ∂Vi contains critical elements and so we cannot use simple
Marching Cubes like algorithms to reconstruct ∂Vi. Hence, our
goal is to replace the sets Vi by geometrically similar voxel sets
V ′

i
such that ∂V ′

i
does not contain any critical elements for all i.

critical edge

singular
critical vertex

2.1 Removal of critical elements

Let us call an edge critical if it is critical in ∂Vi for some label i. In that case
we call the smallest such i the dominant label at e. Critical vertices and their
dominant labels are defined analogously. We can deduce solely from the voxels
containing an edge or vertex whether that edge or vertex is critical or not. Thus
we can efficiently collect all critical vertices and edges by iterating once over the
whole volume.

The main idea of our algorithm is to remove a critical element (edge or vertex)
x by fattening it, i.e. we replace edges by small (discrete) cylinders and vertices
by small (discrete) balls. For this we subdivide the voxels that contain x and
relabel the subvoxels in a neighborhood of x by x’s dominant label. Figure 1a
demonstrates this idea in two dimensions where a 3× 3 subdivision of the pixels
is sufficient to separate and resolve the complex vertices. In three dimensions we
require at least a 5×5×5 subdivision and we need differently sized neighborhoods
for vertices and edges in order not to introduce new critical elements in the
process.

We now make the above ideas mathematically precise: Each voxel that inter-
sects a critical element x is (conceptually) subdivided into 5 × 5 × 5 subvoxels
and each subvoxel inherits the label of its parent. We define the k-neighborhood
Nk(x) of x as N0(x) = {x} and

Nk(x) = {all subvoxels that intersect Nk−1(x)}.



A simple two-step algorithm then removes all critical elements (Fig. 1b): First,
we resolve all critical edges e by relabeling all subvoxels in N 1(e) to e’s dominant
label. Second, we resolve all critical vertices v by relabeling all subvoxels in N 2(v)
to v’s dominant label.

The reason for choosing a larger neighborhood for the critical vertices than
for the critical edges is that edges meeting at a common vertex must be well
separated in order not to introduce new critical elements (Fig. 2).

Note that in an implementation the subdivision and relabeling need not be
actually carried out, but can be easily computed on the fly. Furthermore, the
new voxel sets V ′

i
(now containing regular-sized voxels as well as subvoxels) are

geometrically close to the original sets Vi, i.e. they are not more than 1/2 voxel
apart.

a) b)

Fig. 1. Critical elements are resolved by subdividing and relabeling the adjacent voxels
appropriately. In two dimensions a 3×3 subdivision is sufficient (a), in three dimensions
a 5 × 5 × 5 subdivision is needed (b, subvoxels are shown distorted).

Fig. 2. The top row shows a symmetrical voxel configuration where six critical edges
meet in a common vertex. Fattening this configuration on a 33 subdivision by 1-
neighborhoods introduces new critical edges. The same configuration and its proposed
fattening on a 53 subdivision using 2-neighborhoods for vertices and 1-neighborhoods
for edges is shown in the bottom row. In this case no new critical elements are created.



a)

A B

C

D

b) A B

C
D

D
D

c) A

C
D

B

Fig. 3. a) Three tissues A, B, C are separated by a thin layer of tissue D. b) The finite
grid resolution leads to discretization artifacts. c) Incorporating a-priori knowledge
yields the correct reconstruction.

Incorporating user constraints Suppose we have three tissues A, B, C which
we know to be separated by a thin layer of tissue D (Fig. 3a). Due to noise or
limited resolution, it might not be possible to accurately capture D on a coarse
voxel grid (Fig. 3b). However, it is easy to modify our algorithm such that it
takes this a-priori knowledge into account. For this we define a face f to be
critical, if f separates label A from label B (or B from C, or C from A), and
the dominant label of f is set to D.

Then we proceed analogously to the removal of critical edges and critical
vertices, this time however, we need a 7 × 7 × 7 subdivision (5 × 5 in the two-
dimensional case), in order to separate adjacent critical faces. To be more precise,
we subdivide all voxels that contain a critical element and then resolve all crit-
ical faces/edges/vertices x (in that order) by relabeling all subvoxels in N 1(x),
N2(x), N3(x), to x’s dominant label (Fig. 3c).

2.2 Extraction of the patches

To extract the patches we consider each (sub-)voxel face in turn. If the face
separates two differently labelled voxels we extract a triangulated quadrangle
for that face. Faces that are adjacent to subvoxel faces are triangulated by con-
necting its barycenter to the surrounding vertices by a triangle fan. We then
apply a simple remeshing algorithm that is aware of common patch boundaries
to remesh the extracted patches to a user-prescribed target edge length [5]. This
algorithm also smoothes the patches and removes the typical staircase-artifacts
that are due to the discrete nature of the voxels.

3 Results

We tested our algorithm on synthetic as well as on a number of real data sets
of human hearts. As there are usually very few critical elements (typically less
than 20 singular critical vertices and less than 300 critical edges) the overhead
in memory consumption, running time and output complexity is very low. A
typical 256× 256× 256 volume containing eight different tissues takes less than
2 minutes to extract and remesh to a target edge length of 2mm. Figure 4 shows
reconstructions at different target edge lengths while Figure 5 shows the different
stages of the algorithm and the effect of incorporating a-priori knowledge.



a) b) c)

Fig. 4. Reconstruction of a human heart at a target edge length of 2mm (a) and 4mm
(b). By hiding some of the boundary patches, the interior patches become visible (c).

a) b) c)

Fig. 5. a) A closeup on the reconstruction before remeshing clearly shows the subdi-
vided parts. b) The same part after remeshing to a target edge length of 2mm. c) A
reconstruction where two tissues are automatically separated due to user constraints.

Acknowledgments We want to thank O. Ecabert, J. Peters and J. Weese,
Philips Research Aachen, for helpful discussions and for providing the datasets.

References

1. Ecabert, O., Peters, J., Lorenz, C., von Berg, J., Vembar, M., Subramanyan, K.,
Lavi, G., Weese, J.: Towards automatic full heart segmentation in computed-
tomography images. In: Computers in Cardiology. (2005)

2. Reitinger, B., Bornik, A., Beichel, R.: Consistent mesh generation for non-binary
medical datasets. In: Bildverarbeitung für die Medizin. (2005) 183–187

3. Hege, H.C., Seebass, M., Stalling, D., Zoeckler, M.: A generalized marching cubes
algorithm based on non-binary classifications (1997)

4. Müller, H.: Boundary extraction for rasterized motion planning. In: Modelling and
Planning for Sensor Based Intelligent Robot Systems. (1994) 41–50

5. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In:
Symp. Geometry Processing. (2004) 189–196


