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Abstract—3D localization approaches establish correspon-
dences between points in a query image and a 3D point cloud
reconstruction of the environment. Traditionally, the database
models are created from photographs using Structure-from-
Motion (SfM) techniques, which requires large collections of
densely sampled images. In this paper, we address the question
how point cloud data from terrestrial laser scanners can be
used instead to significantly reduce the data collection effort
and enable more scalable localization. The key change here is
that, in contrast to SfM points, laser-scanned 3D points are not
automatically associated with local image features that could
be matched to query image features. In order to make this data
usable for image-based localization, we explore how point cloud
rendering techniques can be leveraged to create virtual views
from which database features can be extracted that match
real image-based features as closely as possible. We propose
different rendering techniques for this task, experimentally
quantify how they affect feature repeatability, and demonstrate
their benefit for image-based localization.
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I. INTRODUCTION

In this paper we address the problem of image-based
3D localization, i.e., the estimation of the camera pose
given a query image. Current state-of-the-art approaches for
this task [8], [12], [22] represent the scene by a 3D point
cloud obtained by Structure-from-Motion (SfM) techniques
[23] from a set of densely sampled input images [20].
Such approaches have been demonstrated to work well for
collections of isolated tourist sites [8], [12], [22]. However,
scaling them to an entire city would require the collection
of millions of photographs, which entails substantial effort.

On the other hand, there are a number of current activities
to create dense and highly accurate point clouds of urban
environments using terrestrial or car-mounted laser scanners.
Examples for such endeavors include NAVTEQ True [16]
and the Google self-driving car project [24]. Besides cap-
turing pure point data, laser scanners often store a color
value for each point and, when combined with camera data,
these color values could in principal be augmented with
an image gradient or even an entire textured patch. Since
laser scanners measure distances with a high precision, it is
possible and in practical scenarios common to place the laser
scanner only at few sample locations, leading to much larger
intervals between the scan positions. This is not a problem
for creating visually pleasing reconstructions — the resulting

point clouds are still sufficiently dense — but such large
intervals are a problem for image based localization, since
the local feature extractors used for establishing correspon-
dences between query images and the 3D model (e.g., SIFT
[13]) are only tolerant to small perspective changes. In order
to obtain good performance for image based localization, a
densely sampled image database (capturing the variability
of descriptor appearance across viewpoints) is required [8].
The question we would like to address in this paper is thus
how to make the point cloud information usable for large
scale image based localization.

Inspired by the work of Kaneva et al. [9], who showed
that descriptors extracted from photo-realistic renderings are
similar to those extracted from real photos, we investigate
the problem what rendering techniques are best suited for
converting laser scanned point clouds captured at sparsely
sampled locations into a large database of densely sampled
virtual images, providing local features for image-based
localization. We explore a range of different rendering
techniques targeted at application scenarios where different
levels of information are available for the point cloud. For
the case where only colored 3D points are available, we
explore different splat rendering techniques. Since those
still leave holes in the rendered images, we propose to
extend point rendering by inpainting techniques. On the
next level, we investigate how the addition of a single
gradient vector per 3D point can be used to improve the
preservation of color gradients, the key ingredient of local
feature descriptors. For this, we make use of advanced image
completion techniques to reconstruct virtual images from
a sparse gradient field defined by the projected 3D points
and their gradient vectors. Finally, we consider the case
where entire image regions are available to be associated to
3D points as textures. We adapt an existing splat rendering
technique [4] in order to blend overlapping textured splats
to create the virtual image. We experimentally evaluate each
of the proposed rendering approaches on realistic 3D point
cloud data and compare them to a baseline approach working
on sparsely sampled image data. We show what matching
and localization performance can be expected in each of the
scenarios and derive clear usage guidelines.

The rest of the paper is structured as follows. After
discussing related work, Section III, describes some prepro-
cessing steps applied on the point cloud and explains our



different approaches to render synthetic views. Section IV
evaluates the presented rendering techniques and discusses
the obtained results.

II. RELATED WORK

Rendering point clouds. To create the illusion of a
closed surface, Rusinkiewicz et al. render splats, oriented
discs in 3D space, instead of simple points [21]. Using
hierarchical data structures, they are able to easily render
datasets containing several million points in real time. Since
every splat has a constant color, splat rendering might yield
too sharp edges between splats. Botsch et al. suggest a
rendering framework which efficiently averages colors of
overlapping splats in a multi-pass rendering approach [4].
Additionally blending normals enables screen-space lighting
of the visible surface. This approach produces visually more
pleasant images as it blurs hard edges. This behavior is
counter-productive for our use case, as it suppresses the
gradient information required by keypoint descriptors and
detectors such as SIFT. We extend this splat rendering
approach and blend textures of overlapping splats. Note that
this is different to the approach proposed by Yang et al. [27],
which assigns several source textures to one splat and defines
a view-depending weighting function to blend between them.
In our setting we deal with very large point clouds and assign
only one texture to each splat, exploiting the knowledge
from which position a point was measured. This reduces
the number of texture look ups during rendering and we can
simply blend the image intensities and/or image gradients of
overlapping splats using a rendering pipeline more related
to [4]. A more exhaustive overview of point based rendering
techniques can be found in [11], [1].

Alternatively, we could use polygonal surfaces to repre-
sent our scenes instead of the original point clouds. However,
surface reconstruction algorithms such as Power Crust [2] or
Poisson surface reconstruction [10] often produce artifacts
in urban environments caused by moving objects, e.g.,
pedestrians or cars, and translucent objects.

Using synthetic views for image matching. Generating
synthetic views of real objects is a common strategy to
generate training data. For example, Özuysal et al. generate
different views of planar patches using affine transformation
and use them to learn keypoint detectors [18]. Similarly,
affine warping is used to obtain a fully affine invariant
version of SIFT [15]. In a related approach, Wu et al.
exploit information about the 3D structure of the scene
to rectify image patches before extracting SIFT descriptors
[26]. They show that using such viewpoint normalized
descriptors improves the robustness of descriptor matching
as it factors out view-dependent changes.

Irschara et al. use image retrieval techniques [8] to quickly
find a set of database images similar to a query image.
Since image retrieval fails if the query image was taken with

substantially different viewing conditions than the database
images, they generate synthetic images to cover a wider
range of viewpoints. To this end, they place virtual cameras
in a sparse 3D SfM point cloud and backproject the points
into the virtual view. Every visible point is then associated
with an existing SIFT descriptor extracted in one of the
database images. Combining synthetic views with original
photos is shown to improve image retrieval.

Most similar to our approach are the works of Gee &
Mayol-Cuevas and Newcombe et al. [7], [17]. Newcombe et
al. generate synthetic views of a densely reconstructed scene
and perform robust camera tracking [17]. To estimate the
pose of the camera, they thereby find the motion parameters
which generate the view that most closely matches the
camera image. In a similar approach, Gee & Mayol-Cuevas
use regression on synthetic views to re-localize a camera for
which tracking failed. Both methods, specifically designed
for small scenes, use image intensities to compare the images
and require a dense reconstruction of the scene while we try
to perform feature matching against synthetic views rendered
from a point cloud.

III. GENERATING SYNTHETIC VIEWS

Generating synthetic views always requires some kind of
a 3D model of the object of interest. In our setting we
use simple point clouds captured with a Riegl LMS-Z390i
laser scanner. We do not convert such point clouds into
polygonal representations textured with the photographs,
since this involves complicated meshing and parametrization
techniques, which likely will fail for point clouds obtained
in an urban scene containing moving people, traffic, plants,
geometrically complicated facades, reflections etc. We rather
only use some simple filter operations and point based
rendering techniques to generate the synthetic views needed
to compute SIFT features for our localization procedure.
Before rendering synthetic views we perform a number
of preprocessing steps on the point cloud: First of all we
associate an oriented normal to each point and automati-
cally filter outliers based on the distribution of the local
neighborhood. Then we estimate a radius for each point,
which, together with the normals, enables us to render the
point cloud as a closed surface. In order to be able to
detect useless views showing a facade from behind, it is
necessary to compute oriented normals. Since our point
cloud P = {p1, . . . ,pn} is obtained by merging several
individual scans from different positions, we can associate
a scan position s(i) ∈ R3 to each point pi ∈ R3. The local
neighborhood Nr(i) = {j | ‖pj − pi‖ < r} contains all
points pj ∈ P which are close to pi (we select r = 0.2
meters). We compute the unoriented normal n to be the
normal of the plane (n, δ) minimizing

E(n, δ) =
∑

j∈Nr(i)

nT · pj − δ



Figure 1: Different rendering techniques. (1) Simple point
rendering produces gaps. (2) Naive splat rendering produces
strong gradients at wrong image positions. (3) Blending
techniques smooth out gradient information. (4) Textured
splats are nearly photorealistic renderings.

and orient it towards s(i), meaning nT · (pi − s(i)) < 0.
To remove small cluttered point sets, like those typically

produced by fast-moving objects, we apply a simple filter
discarding points pi with |Nr(i)| < m, where we set m = 5
and r = 0.3. Laser scanners radially shoot rays into the
environment to create sample points and thus do not produce
a uniform sampling. We compensate for this and remove
redundant points by applying a grid filter, which assigns at
most one representative point per 2cm3 grid cell.

A. Sift-Realistic Rendering

3D model-based localization approaches require pictures
taken from many different point of views. Therefore, it is
important to be able to render new synthetic images from
arbitrary positions. Generating such virtual images could,
e.g., be done by rendering simple points using the OpenGL
rendering pipeline, but selecting a good point size is hard.
For points being rendered rather small, there will be many
gaps between projected points. Large points, on the other
hand, can easily produce hard edges between neighboring
points. In both cases, gradients computed in those images
are highly unstable and would lead to very unreliable
feature descriptors. In what follows, we will describe the
used rendering techniques which are suitable for visualizing
information associated to the point cloud. This information
may range from pure point colors over image gradients to
entire image regions used to texture small surface patches.

Splat Rendering. The first suggested technique, Splat
Rendering, is commonly used in the graphics community
and usually needs an associated normal, a color, and a radius
ri for each point pi to render the points as small discs. To
compute this radius, one could, e.g., define a global constant.
Although we applied a grid filter, the point cloud still might
contain undersampled regions, so we suggest to locally adapt
the splat radius for each point. For this we propose to first
divide the disc with normal ni and center pi into 12 sectors.
Then we project each neighbor pj ∈ Nr=0.2(pi) onto the
disc and compute for every sector the closest projected
neighbor point w.r.t. pi. We set the splat radius to be the
maximum of all closest projected neighbor points. In order to

compute this maximum correctly, we do not consider empty
sectors. When setting a global scaling factor for the splat
radii (e.g., to 0.8), we ensure that splats partially overlap
with each other. This creates splats also large enough in
regions where the next neighbor in a certain direction is far
away.

Using splat rendering will close gaps between points
and thereby reduce the occurrence of problematic gradients
between foreground and background pixels. A simple im-
plementation of this technique renders point primitives and
adapts the point size in the vertex shader, while the fragment
shader computes the correct depth value for a perspectively
correct appearance of the splats. However, this technique
produces undesired hard edges between neighboring splats.
This is why we implemented a three-pass rendering approach
similar to [4]. The first pass renders the splats without
any color information and generates a depth profile of the
scene. I.e. we store the distance to the visible surface in
every pixel of the virtual image. When shifting the scene
slightly into the viewing direction during the first pass, a
simple depth test can be used in the second pass to remove
splats lying far behind the visible surfaces. For each pixel
of the virtual image, the second rendering pass sums up
the colors and normals of the remaining splats, which lie in
the proximity of the visible surface and which perspectively
project onto the respective pixel. The third and last rendering
pass normalizes the per-pixel sums of colors and normals by
dividing them by the number of splats projecting onto this
pixel. Using the normal information, it is possible to adapt
the final color values according to a local lighting model.
Although this generates visually pleasant color transitions
between neighboring splats, the technique represses existing
gradients leading to less significant feature descriptors, as
we will show in our experimental section.

When additional texture information is available we can
enrich the gradients of our rendered image. For this, we
propose an adaptation of the method presented in [4]. Instead
of using the same color value for each splat, we store an
index of the image (with known projection matrix P ) the
color value was taken from. During the second rendering
pass, we then use P to project the fragments of a splat
into the respective reference image and thereby texture the
splat. As shown in Fig. 1, the resulting images are nearly
photorealistic. In our experiments, we refer to the described
rendering techniques as Points, Splats, Phong Splats, and
Textured Splats, respectively (c.f. Fig. 1).

Texturing splats propagates as much information as pos-
sible from the set of sparse images into the synthetic views,
but storing all images together with a large point cloud
requires a lot of GPU memory for large urban scenes. We
therefore designed two less resource intensive completion
techniques which can be applied in a post processing step
on images produced by point based rendering. The aim
of these techniques is to preserve image gradients, which



are the key component of the SIFT descriptor. Instead of
using complicated heuristics to adapt the size, shape, and
alignment of splats to get an optimal blending result, we
compute synthetic images in image space using inpainting
[3] and color adaption techniques [19].

For the first proposed rendering technique, we associate
an image intensity to each point while for the second method
we require to additionally attach an intensity gradient to each
point, which is easily obtained, since most 3D scanners are
equipped with a consumer level camera used to colorize the
point cloud. As a preprocessing step, we first generate a 2.5D
image (using an arbitrary simple splat or point rendering
technique) to identify fore- and background pixels. This on
the one hand identifies the pixels we need to inpaint and
on the other hand ensures that the resulting image is only
affected by visible points. In what follows, we describe both
rendering techniques in more detail.

Image Completion. We designed Intensity Completion
to preserve the intensities of the projected points, while
it automatically finds color transitions between projected
points to change existing gradients as little as possible. This
is done by minimizing the thin plate energy [5]

EI =
∑
‖∆I(u, v)‖2 , (1)

where the intensities I1, . . . , IK of the projected points
(u1, v1), . . . , (uK , vK) are interpolated and define the con-
straints Ik = I(uk, vk) for the linear system. This will
preserve the original intensities contained in our data set
and since the curvature (or bending energy) of the function
I(u, v) is globally minimized, the gradients between samples
are affected as little as possible. Using the well-known
discrete Laplace operator

∆I(u, v) =
∑
j

wj · (I(u, v)− I(u+ ∆uj , v + ∆vj))

we can set up a linear system of equations to solve for the
missing pixel colors. Here (∆uj ,∆vj) denote the pixel off-
set to one of the four (left, right, top or bottom) neighboring
pixels. To speed up the computation and to guarantee that
the linear system has full rank, we flood fill the foreground
pixels starting from the projected point positions and thereby
identify the free variables of our linear system.

Gradient Completion is our second approach to preserve
gradient information. Instead of interpolating intensity val-
ues in the synthetic image, we compute one intermediate
image which interpolates image gradients projected from
the original images into the synthetic view. Similar to the
method presented in [19], the interpolated gradients serve
as a guidance field which is integrated to an intensity image
using the projected point intensities as additional constraints.
One substantial difference to [19] is the selection of the
pixels to be inpainted, which again we determine by flood
filling the foreground.

Figure 2: Left: Intensity Completion preserves intensities
and varies the gradients between projected points as little as
possible. Right: Gradient Completion additionally preserves
intensity gradients taken from the reference image resulting
in visually much sharper image features leading to more
accurate SIFT descriptors as shown in the results.

To be more precise, we define G(u, v) = ∇I(u, v) to
be the 2D vector field representing the image gradients. For
each projection (uk, vk) of a point pk, we add the constraint

∇I(uk, vk) = ∇J(W(uk, vk)) · ∂W(uk, vk)

∂(u, v)

stating that the intensity gradient at the pixel (uk, vk) in the
virtual image I should match the gradient at a corresponding
pixel in the reference image J . Here W(u, v) = (a/c, b/c)T

is the homography which maps pixels (u, v) from the syn-
thetic image I to the reference image J . Given the projection
matrices PI = (QI |qI) ∈ R3×4 and PJ = (QJ |qJ) ∈ R3×4

of the images I and J and the equation (nk, δk) of the plane
at position pk, the vector (a, b, c)T is computed as(

a
b
c

)
= [δ ·QJ − qJn

T ] · [δ ·QI − qIn
T ]−1 ·

(
u
v
1

)
. (2)

We find the remaining gradients by minimizing the energy

EG =
∑
||∆G(u, v)||2 (3)

similar to Intensity Completion which solves for the intensity
values. Following the derivation in [19], we compute the
final image by fixing intensity values at the projected point
positions while simultaneously restoring image gradients
according to the previously computed guidance field. We
show an example of both methods in Fig. 2. Propagating
gradient information into the synthetic view better preserves
sharp image features. Both approaches use uniform weights
wj = 1 for the Laplace operator in Eq. 1 and 3. We refer to
them as Intensity (Int. Comp. (iso)) and Gradient Completion
(Grad. Comp. (iso)).

Anisotropic value propagation. Using uniform weights
leads to an isotropic value propagation, which is not correct
for perspective distorted surfaces. We propose a method to
adapt the weights wj of an edge between pixels according to
an estimated surface normal at the 3D point p which projects
onto the midpoint of the edge. This normal can be computed
by averaging all splat normals intersecting the ray from the
camera center through the edge midpoint. Orthographically
projecting this normal into image space defines a vector s ∈



R2, which has zero length if the camera looks directly onto
the splat and which is large if the splat normal is orthogonal
to the viewing direction. It basically represents the smaller
half-axis of an ellipse formed by the projection of the circu-
lar splat. We compute the larger half axis of the ellipse by

s
t

β α

dj

ci

cj defining a vector t ∈ R2 perpendicu-
lar to s and ‖t‖ = 1. Let dj ∈ R2 be
the edge from pixel i to a neighboring
pixel j. Intuitively, we would like to
define large weights for this edge if
it is parallel to s and if s itself is
large, since then small distances in
image space map to large distances in
object space and the influence of the
neighboring value should be damped.

To be more precise, we compute coefficients α and β such
that we can express the direction dj as a linear combination
of the two half-axes dj = αs + βt This leads to values for
α and β in the range [1, . . . ,∞], which are used to define
the edge weights wi as

wj = min

(
ε,

1√
α2 + β2

)
.

We use a small value ε = 10−4 to avoid the edge weights
to be zero. We refer to these completion techniques using
anisotropic weights as Intensity (Int. Comp. (aniso)) and
Gradient Completion (Grad. Comp. (aniso)).

Textured Splats with Image Completion. Rendering very
large textured splats closes small gaps between neighboring
splats. But due to small errors in the camera calibration,
errors in the computation of the normal and errors in the
point measurement, this tend to blur the final image, which
reduces the clarity of the available gradients. Rendering
small splats on the other hand sharpens the image but
may produce gaps between neighboring splats due to the
non uniform point sampling, which results unwanted image
gradients. So, for the last investigated rendering approach we
propose a technique which combines textured splats with an
inpainting method to get the best of both worlds. Therefore
we slightly adapt the three pass textured splat rendering ap-
proach. In the first pass we render large splats resulting in a
continuous foreground map F1 which needs to be colorized.
In the second pass we render small splats and discard splats
lying far behind the foreground F1. This second pass also
sums up colors and image gradients, which are correctly
transformed into the virtual view using the plane induced
homography of Eq. 2. Note that this blending in the gradient
domain was not considered in [27] and is an alternative way
to reduce color transitions between photographs. The third
pass normalizes colors and image gradients leading to a
gradient image and an intensity image with foreground map
F2. All gradients in F2 serve as constraints in our Gradient
Completion to compute a guidance field for all pixels in

Figure 3: Our dataset, created from eight scan positions
(green). Red points denote additional scanning positions not
used to create the point cloud.

F1. Again the final image is computed by fixing intensity
values at all pixels of F2 and restoring the image gradients
according to the guidance field. We refer to this technique
as Textured Splats + Completion (Tex. Splats + Comp.).

IV. EXPERIMENTAL EVALUATION

We used a Riegl LMS-Z390i terrestrial scanner to capture
a large scene in a historic European town from eight distinct
locations. The images required to colorize the resulting point
cloud, in the remainder referred to as the included images,
were taken with a Nikon D300 camera mounted on top of the
scanner. We then computed the extrinsic calibrations of the
camera poses by merging the scans into a single coordinate
system. The scanner locations used to create the point cloud
are shown as green dots in Fig. 3. The resulting dataset
consists of around 9 million 3D points. It also contains
tourists standing and sitting around, as well as artifacts
caused by walking pedestrians.

Our study of different point cloud rendering techniques
is motivated by an image-based localization task in which
we want to determine the camera pose for each query photo
relative to the point cloud of the scene [8], [12], [22]. We find
matches between 2D features and 3D points in the model,
which enables us to estimate the camera pose using a 3-
point-pose algorithm inside a RANSAC-loop [6]. To obtain
these 2D-3D correspondences, we match the query image
against a set of database images registered against the point
cloud [8], i.e., a set of images for which the 3D points
corresponding to their image features are known. In order
to localize query photos taken from viewpoints significantly
different from the included images, we create a database
of rendered views of the point cloud. In the following,
we thus show that rendering synthetic images allows us
to approximate novel viewpoints in a way that is similar
enough to real photos to enable feature matching.

We split our experimental evaluation into two parts. In
the first part, we analyze the different rendering techniques
presented in Sec. III by comparing the descriptors extracted



from the included images to descriptors found in synthetic
views rendered from the exact same viewpoints. This allows
us to estimate the best-case performance of the different
methods. In real-world applications, we obviously do not
know the exact position from which a query image was
taken, but rather generate synthetic views from sample
positions on a regular grid [8]. In the second experiment, we
therefore determine the viewpoint invariance of descriptors
obtained using the different techniques by investigating the
required sampling density. For both experiments, we use a
publicly available GPU SIFT implementation [25] to extract
SIFT features on real photos with a resolution of 1065×697
pixels and synthetic views rendered with a resolution of
1024× 768.

Comparing different rendering techniques. The goal
of SIFT-realistic rendering is to generate synthetic images
containing feature descriptors that faithfully reproduce the
descriptors extracted from real photos. In the following ex-
periment, we thus compare the descriptors from the included
images with those found in synthetic views rendered from
exactly the same viewpoint. We compare the different ren-
dering techniques, Point and Splat Rendering, Intensity and
Gradient Completion, and Textured Splatting (+Completion),
regarding the number of features found in the images, the
repeatability of feature positions, and the similarity of the
resulting descriptors. Note that the two texturing methods
use image patches from the photos included in the scan
and thus represent a best case scenario for SIFT-realistic
rendering. We ignore all features for which more than 50%
of the pixels used to compute the feature descriptor back-
project into empty space.

Fig. 4(a) shows the average number of features found per
image. Except for Intensity Completion and the texturing
approaches, all rendering methods generate a similar number
of features. Intensity Completion interpolates between pixel
intensities and thus implicitly blurs the images, resulting
in fewer Difference-of-Gaussian (DOG) extrema and thus
fewer features. Similarly, the images obtained using normal
and Phong splatting become more blurry by increasing
the global scaling factor for the splat size as overlapping
splats are blended together. The texturing methods are less
affected by the global factor since the blended textures are
well-aligned. Therefore, we individually selected the scaling
factor for every splatting method that gave the best results
over all tests while guaranteeing a large enough overlap
between the splats to avoid holes in the renderings.

In order to reproduce the original descriptors from the
photos, the features need to be found at similar positions in
the rendered views. To evaluate the repeatability of the SIFT
detector under the different rendering techniques, we follow
the setup by Mikolajczyk et al. [14]. A feature from the real
photo is considered repeatable if the synthetic view, rendered
from the same viewpoint, contains a feature at a similar

position such that the intersection-over-union (i-o-u) score
between the two corresponding regions used to compute the
descriptors is at least 0.5 [14]. Fig. 4(b) shows the average
ratio of repeatable features per image for the different
rendering techniques. Intensity Completion and the splatting
approaches all yield a much better approximation of the
rendered surface than point rendering and thus obtain better
repeatability scores. Using Gradient Completion results in
a significant increase in repeatability since it reconstructs
image gradients, and thus DoG extrema, more faithfully. As
can be expected, using patches extracted from the original
photo yields the best repeatability. We notice that features
found on lower scales are less repeatable than those found
on higher scales. This drop is caused by slight errors in the
registration of the scans or small measurement errors for the
points, which in turn results in small artifacts when blending
not perfectly aligned textures.

While most rendering techniques result in a low detector
repeatability, even 10% of the image features can be enough
to enable camera pose estimation if they can be matched
successfully between the photos and the synthetic views. We
therefore evaluate image matching quality next, following
the common setup for image matching using approximate,
tree-based nearest neighbor search [13]. For every descriptor
d in the real photo, we find its two nearest neighbors
d1, d2 in the rendered image. We then apply the SIFT
ratio test and establish a match between d and d1 if
‖d − d1‖ < 0.8 · ‖d − d2‖. A match is considered to be
correct if the i-o-u score between the corresponding features
is at least 0.5. Fig. 4(c) shows the number of images which
contain at least k correctly matching descriptors for different
values of k. Fig. 4(d) details the ratio between correct and
all established matches by showing a cumulative histogram
over the inlier ratio for each method. As can be seen, the
Gradient Completion technique performs significantly better
than all methods based purely on colored points. In addition,
it achieves higher inlier ratios, indicating that Gradient Com-
pletion finds fewer wrong matches. Yet, the performance of
the two texturing approaches is still significantly better.

Location recognition using synthetic views. The previous
experiment demonstrates that it is indeed possible to render
synthetic images similar enough to the real photos to enable
feature matching. In the second part of our experiments, we
show that such synthetic views can be used to recognize
novel images taken from viewpoints substantially different
from the photos included in the scans. Therefore, we mea-
sure how close a synthetic view has to be to a novel image to
obtain enough matches for pose estimation. We restrict the
experiments to the image completing and texturing methods,
as they performed significantly better than the point and splat
rendering approaches in initial tests.

We obtain 140 novel images with ground truth positions
by registering 13 additional scans, together with their camera
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Figure 4: Statistics about (a) the average number of features found in the original images included in the scan (black) and
the rendered views and (b) the repeatability of features detected in the original views and the synthetic images. (c) The
number of images for which at least k correctly matching features passing the SIFT ratio test can be found between the
original photo and the corresponding rendered view. (d) The cumulative distribution of the inlier ratios of the image, i.e.,
the ratios of the number of correct matches to the number of matches that pass the ratio test.

positions, against the existing point cloud. The point data
from the additional scans is only used to register the scans
in order to obtain ground truth positions but not for rendering
synthetic views. We thus do not consider novel photos
showing scene structures not present in the original point
cloud, e.g., missing walls. This results in a test set of
126 novel images. Similarly, we allow the texture splatting
approaches to utilize only patches from the included but
not from the novel images. In contrast to the previous
experiment, the texturing methods are thus no longer biased
and can now be treated equally to the other techniques.

We model the ground plane of the scene using a height
field on which we generate a regular grid of positions from
which synthetic views are rendered, where two adjacent grid
positions have a distance of one meter. For each position, we
render 12 images by rotating a virtual camera with a field-of-
view of 90◦ in steps of 30◦ to ensure that neighboring views
have enough overlap. The virtual cameras are placed about
1.7m above the ground plane and are tilted by 15◦ towards
the sky [8]. For every feature extracted in a rendered image,
we compute its 3D point position by back-projecting the
feature into the point cloud. We match each novel photo
against all synthetic views rendered from grid positions
within 20m of the ground truth location of the photo. The
resulting 2D-3D correspondences are then used to estimate
the pose of each novel image using a 3-point-pose solver
within a RANSAC-loop [6]. We consider a match to be an
inlier to an estimated pose if the reprojection error is below√

10 pixels. We regard a novel image as localized if we can
find a pose with at least 12 inliers [12], [22]. As a baseline,
we match each novel image against each photo included in
the scans.

Fig. 5 shows the results of this experiment. As can
be seen, rendering synthetic views using only information
about the scene geometry and intensity values for each
point (Intensity Completion) allows us to localize a similar
or larger number of novel images compared to using the
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Figure 5: The percentage of novel images that can be
localized using synthetic views as depending on the minimal
distance between the ground truth position of the photo and
the location from which the view was rendered. Compared to
matching against the original photos, rendered images allow
us to localize novel views for a range of distances.

original image data, as long as the synthetic views are sam-
pled densely enough. Combining the intensity with gradient
information (Gradient Completion) additionally improves
the results. While we observed that Gradient Completion
performs better than Intensity Completion in the first ex-
periment, we cannot demonstrate a similar improvement in
localization performance. Combining image data with the
scene geometry (texturing techniques) enables us to localize
a significantly larger amount of novel photos compared to
the baseline approach. Since we only match against synthetic
views with a maximal distance of 20m to the ground truth
positions of the novel images, only considering rendered
images that are at least 19m away naturally decreases the
number of localized images. From the results of the baseline,
we would expect that we could improve the results by
also using views with larger distances. We measure a mean
localization error of less than 8cm for each localized image
and each method.



From the results of this last experiment, we derive
the following usage guidelines: Texture splatting makes it
possible to obtain better localization performance than is
possible with the original images captured from the scanning
positions. In addition, they can be rendered in real time
even for medium-scaled city models. They therefore provide
a major benefit for recognition from laser scanned data.
Intensity Completion achieves a similar performance as
using the original photos, enabling image-based localization
even if only the original (colored) point cloud is available.
In addition, storing only (colored) 3D point data yields a
more compact data representation compared to also storing
the additional photos. If gradient information is available
in addition to the intensities, Gradient Completion can be
used to improve the localization performance at the cost of
storing only a single gradient vector per 3D point.

V. CONCLUSION

In this paper, we have shown that it is possible to render
synthetic views in a way that allows us to match SIFT
descriptors extracted in them against descriptors found in
real photos. We have investigated different usage scenarios,
based on the amount of information available for the point
cloud. Since classical point and splat rendering techniques
are not suitable for our task of image-based 3D localization,
we have proposed individual rendering approaches for the
different scenarios. Intensity Completion uses only the inten-
sity information from the 3D points to create SIFT-realistic
renderings, while Gradient Completion requires additional
gradient information to reconstruct image content more
faithfully. Both techniques achieve good location recognition
performance in the case that only colored point cloud
data can be used. If photos are available, texture splatting
techniques lead to even better recognition performance than
using the original images. Our results show that rendering
synthetic images allows us to localize additional views
substantially different from the included photos.

In future work, we plan to integrate the synthetic views
into a full image-based localization pipeline and to evaluate
different types of feature detectors and descriptors.
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