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Abstract

Although massive pre-trained vision-language models
like CLIP show impressive generalization capabilities for
many tasks, still it often remains necessary to fine-tune them
for improved performance on specific datasets. When doing
so, it is desirable that updating the model is fast and that
the model does not lose its capabilities on data outside of
the dataset, as is often the case with classical fine-tuning
approaches. In this work we suggest a lightweight adapter
that only updates the models predictions close to seen dat-
apoints. We demonstrate the effectiveness and speed of this
relatively simple approach in the context of few-shot learn-
ing, where our results both on classes seen and unseen dur-
ing training are comparable with or improve on the state of
the art.

1. Introduction

Much of the success of deep learning when it comes to
vision tasks, such as classification, object detection or seg-
mentation, is due to ever bigger models trained on increas-
ingly large quantity of data.

A popular approach to make use of immense sources of
uncurated data in the form of images with textual descrip-
tions are vision-language models [20,27]. Here both image
and description are individually mapped into a joint embed-
ding space. This embedding is optimized, so that match-
ing pairs are close, and the distance between all other pairs
large. A model trained in this fashion can be used for zero-
shot classification, as the language model can deal with ev-
ery conceivable class by embedding a textual description
(e.g. "a picture of [CLASS]”).

Even though these models can be applied to all kinds
of classification tasks, their performance sometimes is sub-
optimal. This might be the case if used on a dataset with
specific characteristics that differ from the original training
set, e.g. if the task is to recognize the action performed in
an image, even though during training the model only saw
generic objects. In these cases a common technique is to
fine-tune the pre-trained model for the task at hand. How-
ever, updating the complete model is quite expensive (as

the employed models are large). There are two solutions
proposed in the literature to tackle this problem. One is
prompt-learning [38—40] where the context around the class
("a picture of” in the last example) is optimized for a spe-
cific dataset instead of hand crafted. The other option is
to use adapters [12,37], light-weight models (usually small
MLPs) that modify the embedding produced by either the
visual or language model (or both), thus updating the pre-
dictions without the need to update the original networks
parameters.

Both these approaches however still have the problem
that even though the performance is improved for the spe-
cific domain and task the fine-tuning was done for, this
comes at the cost of a decrease in performance on other
tasks/domains compared to the original model [13].

The goal of this work is to reap the benefits of fine-tuning
on a specific task, without losing the generalization ability
of the original model. Work in this direction has already
been done in the form of CoCoOp [38], where prompt-
learning is employed, but the context is not fine-tuned on
a specific dataset, but instead a suitable context is predicted
from the image to be classified. Another approach using
prompt-learning is ProGrad [40] where the context update
is restricted in order not to lose information from the pre-
training stage. Although both methods decrease the perfor-
mance loss in the zero-shot setting, they still do not reach
the abilities of the original model.

In contrast we choose a simple method based on
adapters. The idea is to only update the embedding where
we actually have training data and leave it unchanged ev-
erywhere else, thus retaining the original predictions of the
model, where we cannot improve on them. Furthermore,
even where we have data we want to change the embedding
as little as possible, to allow sensible interpolation between
fine-tuned and original embedding. This approach is ex-
tremely lightweight, as we only need to tune a small amount
of parameters, and back-propagating through the original
model is not necessary. Still we show an improvement in
performance compared to the previous state of the art.



2. Related Work

Zero-Shot Learning Zero-shot learning describes a set-
ting, where the set of classes at training and during testing
are disjoint or at least not identical [4], thus the relation be-
tween classes and images belonging to that class needs to be
learned indirectly. There are numerous works of research in
this area, so we instead refer to [33, 35] for an overview. A
common approach to tackle this task is to relate pre-trained
image and class embeddings [, 2, I1]. This is conceptu-
ally very close to vision-language models, another popular
framework that can be applied for zero-shot learning.

Vision-Language Models The term vision-language
model describes networks that learn an alignment between
images and text in a joint embedding space. A large amount
of work has been done in this area [9, | 1,22, 29], usually
based on contrastive learning, which has been popularized
for pre-training of image models [5, 14, 17] and aims to max-
imize the distance between similar and dissimilar instances
in the embedding space. Currently one of the most popular
vision-language models is CLIP [27], which we use in all
our experiments. It uses a Transformer [3 1] as text encoder
and a ResNet [15] or ViT [8] as image encoder. ALIGN [20]
is a similar approach, whereas DeCLIP [23] tries to improve
the training procedure in order reach the same performance
with less data.

Fine-Tuning When it comes to fine-tuning a pre-trained
vision-language model, there are broadly three types of ap-
proaches in the literature. It is possible to fine-tune the
entire model, but afterwards interpolate between the orig-
inal and updated weights, to counteract overfitting (WiSE-
FT [34]). Alternatively, not the model itself is trained, but
only an adapter that is applied onto the embedding space
(CLIP-Adapter [12]). This is the approach we choose as
well. Instead of learning this adapter, it can be extracted
from the fine-tuning dataset (TIP-Adapter [37]). As this
requires data for every class it is evaluated on, it is how-
ever not suitable for zero-shot learning. The last approach
is called prompt engineering. Here the context of the text
embedding is optimized for performance on the training set
(CoOp [39]). This learning can be restricted in order not
to decrease the loss of information from the pre-training
stage (ProGrad [40]). Another option is to predict the (tex-
tual) context for each image (CoCoOp [38]). This mitigates
overfitting on the train set and thus is better at retaining zero
shot ability on unseen classes, but comes at the cost of an
increased training time.

3. Method

Before introducing our approach in more detail, we will
give a short overview on how vision-language models work
in general on the example of CLIP, which is used in all our
experiments.

3.1. Vision-Language Models

Vision-Language models consist of two networks: an
image encoder f; and a text encoder fr. Their exact im-
plementation is of no interest to us in this context. All we
need to know, is that these models embed an image or a text
respectively to a (normalized) feature vector of the same di-
mension. The cosine distance between an embedded image
and text should then correspond to their similarity i.e. how
well the text describes the image.

During training, we are given a batch of n images X and
their textual descriptions Y. We make the simplifying as-
sumption that each text is a perfect description of the corre-
sponding image and all other texts are completely unrelated.
Thus, we want to minimize the cosine distance between em-
beddings of matching image/text pairs fr(z;),fr(y;) and
maximize the distance between all other pairs within the
batch f; (xi>,fT(yj> with ¢ #£ j.

Another view would be to regard the cosine distance as
the likelihood that a given text y describes the correspond-
ing image z, or vice versa. We can compute the normalized
probabilities as:
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where 7 is a learned temperature parameter. As we assume
the embeddings to be normalized, the dot product is equiv-
alent to the cosine similarity. The probability p(x|y) only
differs in the normalization.

In this view it now makes sense to maximize the proba-
bility for the correct pairs, for which we can use the Cross
Entropy loss. As we want to maximize the probabilities in
both directions the loss is given as:
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Zero-Shot Classification This approach leads to a se-
mantically meaningful embedding of both images and text
that can be used for downstream tasks. Alternatively, we
can use it directly for zero-shot classification. For this we
embed a text for each class (e.g. a picture of [CLASS]) to a
feature vector f7(yx). Then, to classify a given image, we
embed it and compute the distance between its feature vec-
tor fr(z) and all class embeddings. The class probability
for a class k is then given similarly as before as p(yx|x).



Figure 1. The basic idea of our approach is to interpolate between
the original networks output (blue) and the newly trained adapter
(orange) to obtain the final function (green). The interpolation
weight (bottom line) is based on the distance to the samples we
fine-tuned on (green points).

3.2. Local Linear Updates

A big benefit of vision-language models is their general-
ization capability. As they are usually trained on immense
datasets, they tend to show great zero-shot capabilities even
on unseen domains. However, they are not necessarily well
tuned for small specific datasets that were not well repre-
sented in the original training data.

Although we could fine-tune the networks on this spe-
cific set, this would come at the cost of the models ability
to generalize and be quite expensive. Instead we add ad-
ditional functions on the output of the model g; o f; and
gr o fr respectively and optimize only those. This is much
cheaper, as g has much less parameters (we will omit the
subscript for both f and g if both the image and textual
models are meant). Furthermore, as g is applied onto the
output of f we do not even have to back-propagate through
the big models. We could even precompute f on the given
dataset to save further computation cost. In our case we use
distinct networks for g; and gr but is possible to use the
same function as well (g = gr) as they are applied on the
same domain.

The training works slightly differently than before. As
we now do not have unique image/text pairs, but instead
images with their classes, we leave out one half of the loss,
leading to the classical Cross Entropy loss:

N
1
I — -5 ;bg(p(yim)) 3)

A similar idea was presented in CLIP Adapter [12] (Here
only g; is used). This approach significantly reduces the
cost of fine-tuning, but does not solve the problem of loos-

ing capabilities on the previous training dataset while over-
fitting on the new one.

Local Interpolation To lessen the overfitting WISE-FT
[34] interpolates the weights between the original model
and a fine-tuned version. With a similar aim in CLIP
Adapter [12] the results of f and g are interpolated:
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Here « is a global parameter. It would be more sensible to
localize this interpolation to the area of the feature space,
where we obtained new data. Only there do we actually
have information onto how to sensibly update the embed-
dings. As g is a global function but we only supervise it at
our training samples, it is unlikely that it represents a sen-
sible modification away from these samples. Thus, in our
case « is not a global parameter, but a function,

a(z,D) = - maxgep(exp(—y(1 —a"d))) (5

where D is the set of datapoints we fine-tuned on and [ is a
global parameter similar to how o was defined previously.
~ concentrates the focus of the interpolation mask and thus
influences in what range our updated embedding should be
applied. If we would let it go towards zero, we would have a
global o parameter, similarly to CLIP Adapter. On the other
hand, if we let it go towards infinity, we would only update
exactly the images and classes on which we fine-tuned.

Whenever an image is close to one already seen during
training, we thus use our updated features, otherwise we uti-
lize the general knowledge of the pre-trained model. Note
that we do this separately for the text and image encoder, so
there are separate sets Dycqr and Djpqge.

Clustering This approach requires us to save the feature
vectors of all datapoints seen during fine-tuning. This is
not a problem, as long as the dataset used is indeed very
small. If this however is not the case, we cluster the fea-
ture vectors to find sensible representatives. For this we
use agglomerative clustering, where we start by regarding
each datapoint as an individual cluster and then iteratively
merge pairs based on the maximum distance between their
members until we have reached the desired number of clus-
ters. Each cluster needs a position, which is computed as
the (normalized) mean of all its members.

We chose this approach, as it does not make any assump-
tions about cluster shapes nor does it require a sensible ini-
tialization. Furthermore, we expect the number of clusters
to be in a similar order of magnitude as the number of dat-
apoints, so we do not need many merge operations. How-
ever, as we show in the ablation (Sec.4.4), clustering only
has a small effect on the performance and is mainly used to
bound the memory consumption. Thus, the exact clustering
algorithm is not likely to make much of a difference either.



Identity Regularization So far, we have restricted the re-
gion, where we change the feature space, but not the mag-
nitude of the update, which can become arbitrarily large. It
is however desirable that the update is as small as possi-
ble, while minimizing the training loss. As we assume the
original pre-trained features to already be useful, we want
to stay as close to them as possible in order to retain gen-
erality. Furthermore the interpolation between f and g o f
should result in sensible embeddings, which is more likely
the case, if they are close to each other. In other words, g
should stay as close to the identity as possible.

This is easy to enforce, if we simply choose g as an affine
function g = Wx + b. In this case our regularization takes
the form:

MW = Il[2 + |[b][2) (6)

where [ is the identity matrix and A a weighting parameter.

Of course we could choose a more complex function and
regularize g to stay close to the identity at a set of sample
points. However, a dense sampling of the embedding space
is infeasible, and we are interested in retaining this property
wherever the interpolation weight « is non-zero.

Furthermore, we initialize g as the identitiy function,
which is trivial for affine functions, but not for non-linear
MLPs.

4. Evaluation

For our evaluation we follow CoCoOp [38], where three
problem settings are investigated:

1. Generalization to new classes within a given dataset.
2. Generalization to new datasets after fine-tuning.

3. Generalization to domain-shift.

Before presenting the conclusions, we will introduce the
used datasets, and explain the training procedure.

Datasets Similar to CoCoOp, we follow CoOp [39] in
the choice of datasets used in evaluation. To be precise
we use 11 datasets that cover a wide range of tasks: Im-
ageNet [7] and Caltech101 [10] for generic object classi-
fication, OxfordPets [26], StanfordCars [21], Flowers102
[25], Food101 [3] and FGVCAircraft for more specific ob-
ject classification, [24], SUN397 [36], DTD [6], EuroSAT
[16] and UCF101 [30] for a diverse set of tasks. Further-
more, to evaluate domain generalization we regard Ima-
geNet as source and four different versions under different
types of domain shift as target. The four datasets are: Ima-
geNetV2 [28], ImageNet-Sketch [32], ImageNet-A [19] and
ImageNet-R [18].

The set of images for few-shot training are randomly
sampled for each dataset, while using the original test set
for testing. For approaches that need training we average
the results over three runs.

Training Our implementation is based on the published
code of CoOp. We use the same learning rate and number
of epochs as they do. Following CoCoOp we use ViT-B/16
as the vision backbone of CLIP. As ProGrad has been evalu-
ated on a different backbone, we retrained it for a fair com-
parison. Note that both CoOp and CoCoOp have a context
length of 4 initialized as the prompt: ’a photo of a”, whereas
for CLIP Adapter and us the context is class dependent and
ProGrad has a context length of 16 with a class-dependent
initialization. If not stated otherwise we choose the param-
eters of our approach as § = 0.5, v = 20, A = 1e3 and the
number of clusters as 512.

4.1. Base to New Generalization

On each dataset, the classes are split equally into a set
of “base” classes on which the adapter is trained and un-
seen “new” classes, where we only evaluate. Thus, no mat-
ter how many shots are given for the training, on the new
classes we will always do zero shot inference. We show re-
sults for different numbers of shots in Figure 2 and report
exact values in Table 1. Here we also give the harmonic
mean between the evaluation on base and new classes for
an easier comparison of the approaches regarding their re-
spective trade-offs.

As can be seen, on the 16 shot evaluation our approach
outperforms all other methods on 8 out of 11 datasets, when
regarding the harmonic mean. Here we have on average an
improvement of almost 3 percentage points to CoCoOp (the
next best method). Furthermore, (on average) our localized
adapter beats all other methods regarding new classes inde-
pendent of the number of shots and is first or second on the
base classes.

Our method is the only one that reaches the performance
of CLIP when it comes to zero-shot performance on unseen
classes, whereas all other methods show a drop in perfor-
mance here that usually increases with the number of shots,
hinting at overfitting.

4.2. Cross-Dataset Generalization

In this experiment the models are fine-tuned on Ima-
geNet and then evaluated on the other datasets, thus an im-
provement on ImageNet (compared to CLIP) is expected.
Interestingly both CoCoOp and our approach show an im-
provement (on average) on the other datasets as well. Ap-
parently the training samples of ImageNet are numerous
and diverse enough to avoid overfitting and the data distri-
bution of ImageNet is closer to the other regarded datasets
than the original training set of CLIP. Although our method
does not reach the results of CoCoOp on this evaluation we
come very close.
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Figure 2. Comparison in the intra-class generalization setting. We compare our approach (red) vs. CoOp (green), CoCoOp (yellow),
ProGrad (cyan) and CLIP Adapter (purple). Zero-shot CLIP is shown as a baseline in blue. circles mark the base classes and x the unseen

new classes.

4.3. Domain Generalization

In this last comparison the models are again fine-tuned
on ImageNet and then evaluated on different versions with
a clear domain shift. Here we can see a slight drop of perfor-
mance between our method and prompt based approaches.
This might be due to the fact that prompt-based approaches

only fine-tune the input of the text encoder. As the class
names and thus the text encodings are not affected by do-
main shift, their performance generalizes better. On the
other hand we directly update the text and image embed-
ding (and CLIP Adapter only updates the image embed-
ding), which might be problematic as here changes caused



Base  New H Base New ‘ H Base New H
CLIP 69.34 74.22 | 71.70 CLIP 7243  68.14 | 70.22 CLIP 96.84 94.00 | 95.40
CoOp 82.69 63.22 | 71.66 CoOp 7647 67.88 | 71.92 CoOp 98.00 89.81 | 93.73
CoCoOp 80.47 71.69 | 75.83 CoCoOp 7598 7043 | 73.10 CoCoOp 97.96 93.81 | 95.84
ProGrad 82.79 68.55 | 74.46 ProGrad 77.03 68.8 | 72.68 ProGrad 98.50 91.90 | 95.09
CLIP Ada. 82.62 7097 | 76.02 CLIP Ada. 76.53 66.67 | 71.26 CLIP Ada. 98.20 93.20 | 95.63
LLU 83.48 74.47 | 78.46 LLU 76.77 69.00 | 72.68 LLU 98.17 93.93 | 96.00

(a) Average over 11 datasets (b) ImageNet (c) Caltech101

Base New ‘ H Base New H Base New H
CLIP 91.17 97.26 | 94.12 CLIP 63.37 74.89 | 68.65 CLIP 72.08 77.80 | 74.83
CoOp 93.67 95.29 | 94.47 CoOp 78.12  60.40 | 68.13 CoOp 97.60 59.67 | 74.06
CoCoOp  95.20 97.69 | 96.43 CoCoOp 7049 73.59 | 72.01 CoCoOp 94.87 71.75 | 81.71
ProGrad 9440 95.10 | 94.75 ProGrad 79.00 6793 | 73.05 ProGrad 96.27 71.07 | 81.77
CLIP Ada. 94.40 94.10 | 94.25 CLIP Ada. 77.13 69.23 | 72.97 CLIP Ada. 97.70 70.83 | 82.13
LLU 94.47 97.00 | 95.72 LLU 79.27 75.50 | 77.34 LLU 97.83 76.03 | 85.57

(d) OxfordPets (e) StanfordCars (f) Flowers102

Base  New ‘ H Base New H Base New H
CLIP 90.10 91.22 | 90.66 CLIP 27.19  36.29 | 31.09 CLIP 69.36  75.35 | 72.23
CoOp 88.33 82.26 | 85.19 CoOp 40.44 22.30 | 28.75 CoOp 80.60 65.89 | 72.51
CoCoOp  90.70 91.29 | 90.99 CoCoOp 3341 23.71 | 27.74 CoCoOp 79.74 76.86 | 78.27
ProGrad 90.17 89.53 | 89.85 ProGrad 42.63 2697 | 33.04 ProGrad 80.70 71.03 | 75.56
CLIP Ada. 90.40 90.40 | 90.40 CLIP Ada. 39.57 32.27 | 35.55 CLIP Ada. 81.67 73.93 | 77.61
LLU 90.20 91.33 | 90.76 LLU 43.87 34.67 | 38.72 LLU 81.27 76.67 | 78.90

(g) Food101 (h) FGVCAircraft (i) SUN397

Base New H Base New H Base New H
CLIP 53.24 59.90 | 56.37 CLIP 56.48 64.05 | 60.03 CLIP 70.53 77.50 | 73.85
CoOp 79.44 41.18 | 54.24 CoOp 92.19 54.74 | 68.69 CoOp 84.69 56.05 | 67.46
CoCoOp 77.01 56.00 | 64.85 CoCoOp 8749 60.04 | 71.21 CoCoOp 82.33 7345 | 77.64
ProGrad 76.70 46.67 | 58.03 ProGrad 91.37 56.53 | 69.85 ProGrad 83.90 68.50 | 75.42
CLIP Ada. 80.47 52.23 | 63.35 CLIP Ada. 8693 64.20 | 73.86 CLIP Ada. 85.80 73.63 | 79.25
LLU 80.56 60.63 | 69.19 LLU 90.33 66.30 | 76.37 LLU 85.83 78.13 | 81.80

(G) DTD (k) EuroSAT (1) UCF101

Table 1. Comparison in the intra-class generalization setting. All methods except for CLIP (CoOp, CoCoOp, ProGrad, CLIP Adapter and
our method LLU (Localized Linear Updates)) are trained on the base classes with 16 shots. H denotes the harmonic mean.

by the domain-shift have a more direct effect.

4.4. Further Analysis

Ablation Here we discuss the effect different design
choices in our approach have on the result. For this we re-
gard the average performance achieved on the Base to New
training setup, when using 16 shots (Table 4). As already
mentioned, it barely makes any difference, whether we use
clustering or not (’no cluster”), thus it is a sensible choice
to limit the memory requirements. Using the global damp-
ening parameter 3 does lead to an improvement, although it
is rather small ("no damp”).

Not restricting the interpolation to the training sam-

ples ("no mask’) leaves the results on the base classes un-
changed but leads to overfitting and thus a reduced perfor-
mance on unseen classes. On the other hand focusing the
interpolation exclusively on the training samples (“Dirac
mask” equivalent to a v parameter of infinity) leads to the
same performance as CLIP for new classes, but of course
this way our method cannot improve on unseen classes ei-
ther, as seen in Tables 2 and 3. Note that for numerical
reasons, we did not actually implement a y parameter of
infinity, but clamped « to zero or one, depending on some
small distance threshold.

Interestingly leaving out the identity regularization ("no
reg”’) barely has any effect on the results, whereas an initial-
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CLIP 66.7 92.8 89.2 65.3 68.2 85.8 24.9 62.6 44.5 47.7 66.7 | 64.77
CoOp 71.51 | 93.70 89.14 6451 68.71 8530 1847 64.15 4192 4639 66.55 | 63.88
CoCoOp 71.02 | 9443 90.14 6532 71.88 86.06 2294 67.36 45.73 4537 68.21 | 65.74
ProGrad 72.00 | 92.67 89.73 64.00 68.37 8527 2030 64.60 43.07 4453 65.20 | 63.78
CLIP Adapter | 71.77 | 92.17 86.47 60.50 67.63 82.53 2290 62.77 4223 47.67 63.37 | 62.82
LLU 7213 | 92.00 89.10 65.37 7123 86.10 2487 6493 44.63 47.77 67.10 | 65.31

Table 2. Comparison for cross dataset generalization capability. All approaches are trained on ImageNet (16 shots) and then evaluated on

all 11 datasets.

‘ Source ‘ Target

‘ ImageNet ‘ ImageNetV2 ImageNet-Sketch ImageNet-A  ImageNet-R
CLIP 66.73 60.83 46.15 47.77 73.96
CoOp 71.51 64.20 47.99 49.71 75.21
CoCoOp 71.02 64.07 48.75 50.63 76.18
ProGrad 72.00 64.70 48.37 49.73 75.57
CLIP Adapter 71.77 63.97 46.27 47.80 72.10
LLU 72.13 64.53 47.17 48.87 74.30

Table 3. Comparison for domain generalization capability. All approaches are trained on the standard version of ImageNet (16 shots) and

then evaluated on 4 different types of domain shift.

ization to identity seems to be more important (“rand. init”).
We assume that the training does not include enough update
steps for effects to be seen. To substantiate this claim we re-
port the actual distance to identity in Table 4 (for relevant
experiments). Here we can see that the distance between our
adapter and the identity function does correlate with perfor-
mance. Lastly we can see that only using a single Linear
Layer as an adapter without any of our additional improve-
ments leads to significantly worse results, especially on the
unseen classes, thus each of our improvements makes only a
small difference individually, but together they significantly
increase performance.

Training speed A comparison of the training speed be-
tween our approach and prompt based methods depends on
both the batch size and the number of classes.

As we can precompute the class embeddings, the training
time of our method is almost independent of their number.
Prompt based approaches instead need to compute the class
embeddings in every iteration. On the other hand the num-
ber of class embeddings is independent of the batch size,
whereas our adapter needs to be applied to every training
sample. In Figure 3 we show the timing for a single for-
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Figure 3. Comparison of timings. Our approach (red), CoOp
(green), ProGrad (cyan) and CLIP Adapter (purple). CoCoOp is
marked as an orange dot, as a batch size bigger than one does not
fit into memory

ward and backward pass depending on the batch size. As
can be seen our method and CLIP Adapter are consistently
the fastest and the difference in their timings is negligible
(it is barely possible to differentiate their lines). Gener-



CLIP Default nocluster nodamp. nomask Dirac mask noreg rand.init Linear

Base 69.34  83.48 83.35 83.58 83.41 83.28 83.32 82.91 81.02
New 7422 7447 74.40 73.98 72.53 74.21 74.42 72.67 32.60
Mean 71.70  78.46 78.36 78.16 71.27 78.22 78.33 76.94 45.79
Regularization - 1.95e-5 - - - - Se-4 3.6e-3 6.5¢-3

Table 4. Ablation of different design decisions in our network. The details of the different experiments are explained in subsection 4.4

ally the overhead of the computations due to the adapter
barely matter, as can be discerned from the similar slope
of CoOp and the adapter based methods. The number of
classes influences the distance between these parallel lines,
which signifies the overhead due to the computation of their
embedding.

For CoCoOp we only have a single data point, as batches
with more than one sample do not fit into memory. Thus,
although for a batch size of one the training speed is similar
to CoOp, in practice CoCoOp is much slower, as we cannot
increase the batch size. ProGrad is consistently slower than
other methods due to additional computations needed for
gradient decomposition.

5. Conclusion

As the requirements in size, data and compute for state
of the art AI models increases, it becomes more and more
important to be able use available pre-trained networks for
complex downstream tasks. In order to do this we need
to be able to fine-tune these models in an efficient manner,
preferably without loosing the generalization capability that
makes them so useful in the first place.

We have introduced an extremely simple approach for
this task, introducing small linear updates to the embedding
space, localized to the datapoints, where we fine-tune. Our
model is fast to train and needs a minimal amount of extra
parameters, but still reaches state of the art results both on
fine-tuned and unseen classes.

In this work we always trained our adapter for optimal
performance on a single dataset. A possible future research
direction would be to generalize our approach to multiple
distinct fine-tuning datasets. It would be possible to use
dataset-dependent adapters and interpolation weights, but
some further work would be needed to make this scalable.
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