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Abstract

We present a method for the interactive segmentation of textured 3D point clouds. The problem is formulated as a minimum

graph cut on a k-nearest neighbor graph and leverages the rich information contained in high-resolution photographs as the

discriminative feature. We demonstrate that the achievable segmentation accuracy is significantly improved compared to using

an average color per point as in prior work. The method is designed to work efficiently on large datasets and yields results

at interactive rates. This way, an interactive workflow can be realized in an immersive virtual environment, which supports

the segmentation task by improved depth perception and the use of tracked 3D input devices. Our method enables to create

high-quality segmentations of textured point clouds fast and conveniently.

CCS Concepts

• Computing methodologies → Point-based models; Image processing; Virtual reality;

1. Introduction

Automatic 3D scene understanding is vital for an increasing num-
ber of important applications such as human-machine interaction,
autonomous driving, drone navigation, geographical surveying and
surveillance. For such applications, an accurate and reliable seg-
mentation is a crucial building block to distinguish and identify
different classes of objects.

Other types of applications capture and process high-fidelity re-
productions of real-world scenes. Examples include the entertain-
ment industry and diverse areas such as cultural heritage preserva-
tion, archeology, construction site monitoring or crime scene inves-
tigation. For many of these, an accurate segmentation of individual
objects is essential for further processing and analysis, such as se-
mantic labeling or mesh generation.

Strong fully automatic segmentation methods for 3D point
clouds exist due to the increased availability of training data and ad-
vances in data-driven models. Yet, they are not always sufficiently
reliable and can lack the necessary precision for downstream ap-
plications in geometry processing. To improve such approaches
further, the availability of manually labeled training data is cru-
cial. Precisely labeling 3D point cloud data is, however, a labor-
intensive and expensive process. A critical component for further
development of point cloud segmentation methods are thus inter-
active solutions that enable a human operator to generate precise
segmentations fast and efficiently.

Interactivity is also the prerequisite to implement a user interface
for the segmentation task in an immersive virtual environment. The
ability to move freely, the added depth perception, and the use of

tracked 3D input devices naturally support the task of inspecting
three-dimensional structures and directly interacting with them.

In this work, we present a user-assisted point cloud segmentation
method based on minimal graph cuts. It is inspired by the work of
Rother et al. and extends the GrabCut technique into the domain
of textured 3D point clouds [RKB04]. Our method is designed to
work efficiently on large datasets and yields results at interactive
rates. The user can thus be kept “in the loop” and directly interact
with the segmentation result to refine it.

Our method improves on previous approaches by leveraging the
rich information in the photographs for textured splat rendering. We
show that our method significantly improves the initial segmenta-
tion result compared to using an average color per splat. Due to our
interactive workflow, the result can be refined fast and conveniently,
such that high-quality segmentations are achieved with low effort.

2. Related Work

In the following, we review prior work in point-based rendering,
graph cut-based image segmentation and user-assisted segmenta-
tion of 3D point clouds.

The use of points as a rendering primitive has been pioneered
by Levoy and Whitted [LW85]. Pfister et al. proposed surfels

as a rendering primitive that approximates the local surface with
oriented discs in 3D space [PZVG00]. Botsch et al. introduced
Phong Splatting, which uses a two-pass rendering approach to gen-
erate a smoothly varying normal field for high-quality lighting and
shading [BSK04] The method was subsequently extended to run on
modern GPUs and to include textures for improved surface appear-
ance [BHZK05]. Schmitz et al. proposed virtualized textures for

© 2022 The Author(s)

Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0002-4994-4841
https://orcid.org/0000-0002-7880-9470


P. Schmitz, S. Suder, K. Schuster & L. Kobbelt / Interactive Segmentation of Textured Point Clouds

massively detailed datasets and 3D ellipsoids as a rendering primi-
tive [SBMK20].

Minimal graph cuts are commonly used to segment 2D images,
as first introduced by Boykov et al. [BJ01]. Starting from two sets
of known foreground and background pixels, a graph is constructed
that connects each pixel to a virtual source and sink node. The
weights assigned to these edges are based on so-called “regional
terms” that model the cost of assigning the pixel to the respective
class given its color or intensity. A second set of edges connects
each pixel with its direct neighbors. Their weight is based on the
“boundary terms” that model the cost of labeling the two adjacent
pixels differently. The boundary terms are based on a similarity
measure between pixel values, such that labeling two very simi-
lar adjacent pixels differently incurs a high cost. The segmentation
is then computed as the cut with minimum cost that separates the
virtual source from the sink node.

A popular variant is the GrabCut technique by Rother et
al. [RKB04]. They propose an interactive segmentation method,
in which the user first annotates foreground and background pix-
els. A Gaussian Mixuture Model (GMM) is estimated to model
the probabilities of pixels to belong to either foreground or back-
ground. The algorithm then computes the minimal cut, and refines
the GMM parameters based on the predicted labels to compute new
edge weights. By iterating this process multiple times, the segmen-
tation result can be improved without requiring additional user in-
put. If the resulting segmentation is still inaccurate in some places,
the user can refine it by labeling additional parts of the image and
repeat the process. Our presented method is inspired by their work
and extends it to the domain of textured 3D point clouds. Other
previous work extends the GrabCut technique to single RGB-D im-
ages [SD13] or reconstructed polygonal scenes [MD15].

A number of automatic methods for the segmentation of 3D
point clouds have been proposed, based on region growing and
model fitting, unsupervised clustering, classic supervised or semi-
supervised machine learning as well as deep learning. They have
thoroughly been covered in the literature and we want to refer the
reader to previous surveys on the topic [NL13; GMR17; XTZ20].
The majority of work uses only geometric information, without fur-
ther attributes such as color, texture or semantics.

For interactive point cloud segmentation, Golovinskiy and
Funkhouser present a purely geometrical approach for 3D point
clouds [GF09]. They compute a minimum cut on a k-nearest neigh-
bor graph with inverse distance weighting of the edges and a back-
ground radius prior for the expected size of the segmented object.
Sedlacek and Zara perform graph cuts on 2.5D terrain data with
edge weights based on Euclidean distance and the goal to segment
buildings from a ground surface [SZ09]. Sallem and Devy incor-
porate a single color per splat into their graph cut formulation for
the segmentation of single RGB-D images [SD13]. An approach
based on model-fitting within a region of interest defined via 2D
sketching was presented by Steinlechner et al. [SRS*19].

3. Method

In the following, we present our method for the user-assisted seg-
mentation of 3D point clouds. In contrast to previous methods,

we target textured point clouds as used in textured splat render-
ing [BHZK05]. We leverage the rich information in the splat tex-
tures for a more accurate and reliable segmentation. Since each
splat is associated with the section of a high-resolution photograph,
we can use image similarity metrics to take the detailed surface ap-
pearance into account. We show that this significantly improves the
segmentation accuracy compared to using just a single RGB color
per splat as in previous work [SD13]. Moreover, our goal is to con-
veniently segment multiple object instances at the same time.

The input to our method is a 3D point cloud with a texture patch
associated with each point. Given a position and an estimated nor-
mal that defines a tangent plane, the texture information can be
obtained by projecting each splat into an image. For high-quality
reconstructions based on laser range scanners, these are typically
high-resolution photographs taken during range data acquisition.
For photogrammetric reconstructions, the input images can directly
serve as the source of texture data for each reconstructed point.

It is important to note, that our segmentation algorithm can be
performed independently of the input modality, e.g., on a desktop
workstation with traditional input devices or even non-interactively.
Yet, we propose to perform the task in an immersive virtual envi-
ronment, where the user can directly interact with the point cloud.
We believe that the added depth perception and direct 3D inter-
action help to achieve an intended segmentation quicker and more
easily. Evaluating this in a formal user study is, however, not within
the scope of this work and will be investigated in the future.

3.1. Overview

Our interactive segmentation involves the following steps:

1. Select a volume of interest
2. Label some splats as foreground or background
3. Compute the segmentation
4. Optional: refine the labeling and recompute the segmentation

Inspired by the GrabCut technique, we begin with a broad selec-
tion around the desired object (see Figure 1a). The user can then in-
teractively label points as Foreground (green) or Background (red)
(see Figure 1b). The segmentation is then computed as a minimum

s-t cut. The steps do not have to be performed in strict order and can
be repeated whenever needed. To improve the segmentation accu-
racy without requiring additional user input, we perform multiple
graph cut iterations similar to [RKB04]. Figure 1c shows an exem-
plary segmentation result. In the following sections, we explain the
individual steps in more detail.

3.2. Graph Cut Formulation

Our goal is to achieve a high segmentation accuracy at interac-
tive computation times for large datasets. Similar to the work by
Funkhouser et al. [GF09], we compute the segmentation as a mini-

mum s-t cut on a k-nearest neighbor (kNN) graph (see Figure 2).

To measure similarity between splats, we propose to use color
and gradient histograms as the discriminative features. While be-
ing sufficiently descriptive to capture differences in surface appear-
ance, comparing the resulting feature vectors can be performed
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(a) (b) (c)

Figure 1: Interactive Segmentation: (a) Select the volume of inter-

est, (b) Label splats and (c) Compute the segmentation.

Figure 2: A k-nearest neighbor (kNN) graph defines topological

structure in the otherwise unstructured domain of point samples.

efficiently. To determine the class probabilities for Foreground or
Background splats, we propose to train a Support Vector Machine

(SVM) on the respective set of labeled splats. The SVM has a high
discriminative performance, however can be retrained efficiently.
We investigated different feature combinations and comparison
measures with regard to pre-computation cost, memory require-
ments, runtime efficiency and segmentation accuracy. We present
the techniques that we used in our experiments in the following.

3.2.1. Features

Besides geometric features like position and normal, our targeted
point clouds have a splat texture assigned to every point. In this
work, we focus on texture information as the discriminative feature.
Our method can easily be extended to include geometric informa-
tion, such as distances or normal deviation, by extending the feature
vectors and adding respective penalty terms to the edge weights.

The most basic color feature is the average color per splat, which
is readily available from typical RGB-D scanners. Since previous
point cloud segmentation methods have used per-point colors, we
compare our approach against the average color as a baseline.

To retain more information contained in the splat textures, we
investigated different types of color histograms: one-dimensional
histograms, computed separately for every color channel, and full
three-dimensional histograms computed over all color channels.
Table 1 shows the respective number of bins that we used. As the
RGB color space is device-oriented but the segmentation result

R G B ∑/∏
1D 16 16 16 48
3D 8 8 8 512

Table 1: Bin counts for per-channel 1D and full 3D histograms

(a) Splat texture
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(b) Histogram of Oriented Gradients

Figure 3: Gradient histograms for two splat textures. The feature

descriptor captures the statistical distribution of edge orientations.

should focus on human perception, we investigated the CIELAB
color space as an alternative.

We use a Histogram of Oriented Gradients (HOG) [DT05] to
capture gradient information. Usually, when computing the HOG
descriptor, an image is split into overlapping cells and a gradient
histogram is computed for every cell. We compute only one such
histogram per splat to be invariant to translation. For the gradient
direction we use 9 bins. Figure 3 shows a visualization of the HOG
features of two different splat textures.

3.2.2. Accumulation Radius

For datasets with high geometric resolution, the texture-based fea-
tures may be too local to capture similarities of the same object. For
example, a colorful window may consist of splats that are mostly
single-colored (see Figure 4). In this case, neighboring splats that
belong to the same object can have very dissimilar feature vectors.
However, we still want to encode a strong similarity. We therefore
define a radius over which the feature vectors of neighboring splats
are accumulated. Note, that this is independent of the radius of a
single splat that is used for rendering.

(a) 2 cm (b) 5 cm (c) 7 cm (d) 10 cm (e) 20 cm

Figure 4: A splat texture of a glass window resampled at different

radii. If the radius is too small, splats showing the same object can

have largely varying color distributions.
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Figure 5: Unary potentials (left) encode the probability of a splat

to belong to the foreground. Pairwise potentials (right) encode the

similarity between neighboring splats.

3.2.3. Unary Potentials

The Unary Potentials or “regional terms” ϕ(p) encode an individ-
ual penalty of assigning the splat p to the Foreground or Back-

ground class [BJ01]. To compute the unary potentials, we train a
Support Vector Machine (SVM) on the feature vectors of all labeled
splats. We use a C-Support Vector Classification (C-SVC) machine
with a radial basis function kernel [CL11].

The edge weights ϕs(p) for the virtual source link and ϕt(p) for
the sink link of a splat p are computed as:

ϕs(p) =











K “Foreground”

0 “Background”
1

1+exp(−R(p))
otherwise

(1)

and

ϕt(p) =











0 “Foreground”

K “Background”

1−ϕs(p) otherwise

(2)

where R(p) is the raw prediction output of the SVM, which cor-
responds to the signed distance from the decision boundary. It en-
codes the confidence for a splat belonging to either class as a poten-
tially unbounded positive or negative number. We use the sigmoid
function to obtain bounded values in the [0,1] range. Similar to
[BJ01] we define K as:

K = 1+max
p∈P

∑
{p,q}∈N

ψ(p,q),

where P is the set of all splats, N is the set of all edges in the kNN
graph and ψ(p,q) is the pairwise potential for the edge {p,q}.

Figure 5 shows a visualization of the unary potentials, where the
RGB color of every splat p is defined as (ϕt(p), ϕs(p), 0). Splats
with a green color are more likely to belong to the Foreground class
and splats with a red color to the Background class. Bright green or
red colored splats are those labeled by the user.

3.2.4. Pairwise Potentials

The Pairwise Potentials or “boundary properties” encode the sim-
ilarity of neighboring splats. They act as a geometric regularizer

and favor cuts with short segmentation boundaries between dissim-
ilar splats. To compute similarity, histogram-based features can be
compared using bin-wise or cross-bin distance measures. Using the
former, a small shift in color intensities could result in a low simi-
larity score for otherwise perceptually similar histograms [RTG00].
In contrast, cross-bin measures are not susceptible to these differ-
ences, but are computationally more expensive. We investigated the
Hellinger distance and the symmetric Chi-Square (χ2) distance as
bin-by-bin measures [Bra00], as well as the Earth Mover’s Dis-

tance as a cross-bin measure [RTG00]. To convert distances to sim-
ilarity, we used the exponential function as s(d) = exp(−d). To in-
clude a combination of different features in the pairwise potentials,
we compute an affine combination of the individual measures.

Figure 5 shows a visualization of the pairwise potentials. Edges
with a green color represent a higher similarity between splats and
edges with a red color a lower similarity.

3.2.5. Iterated Graph Cuts

Similar to [RKB04] we perform iterated graph cuts. In each itera-
tion, the resulting labels from the previous iteration are used to re-
train the SVM, in addition to the user-specified labels. This way, the
pairwise potentials can repeatedly act as a regularizer, which can
significantly improve the segmentation result (see Section 4.1.4). If
necessary, the user can perform adjustments by manually labeling
additional points and repeat the process.

3.3. 3D User Interaction

Our main methodical contribution is the graph cut formulation
based on image similarity between textured splats. To evaluate our
algorithm and to build an interactive workflow that enables us to
apply it in practice, we chose to build a user interface in a virtual
environment. It enables direct interaction with the 3D point cloud
and occurs to us as a natural choice for this task.

Since our method targets large point cloud datasets, both in terms
of scale and number of points, the segmentation is computed within
a user-defined Volume of Interest (VOI) that encloses the target ob-
ject. This helps to achieve interactive response times, which are
required to keep the user in the loop. Using tracked motion con-
trollers, the user can define boxes directly in 3D space by pressing
a button at opposing corners. The union of all boxes then defines
the VOI. To minimize the required user interaction, all splats at the
boundary of the VOI are implicitly labeled as Background.

The volumes do not have to be connected and additional boxes
can be added after an initial segmentation has been computed (see
Figure 6). This enables to focus on one part of the scene first (a)
and then extend the VOI, either by adding overlapping (b) or com-
pletely separate boxes (c). The segmentation can thus easily be ex-
tended to include multiple similar object instances.

We provide two interaction techniques for splat labeling: a pick-
ing ray and a proximity-based “brush” (see Figure 7). The picking
ray can be used on 2D displays or to mark splats at a distance. The
proximity-based brush offers a more natural and precise interaction
method to mark nearby points in an immersive environment. Both
methods mark splats around a query point within an adjustable ra-
dius. The query point of the brush is the controller position. For the
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(a) (b) (c)

Figure 6: The initial volume of interest (a) can be extended by

adding overlapping boxes (c) or completely separate boxes (c).

(a) Ray Picking (b) Brush

Figure 7: Interaction techniques for splat labeling. Ray picking en-

ables to select splats at a distance without traveling. The proximity-

based brush enables precise marking of nearby splats.

picking ray, we perform ray-marching from the controller position
into the depth buffer to efficiently find the intersection.

To travel in the scene, we use pointing with the controller for
hand-directed steering and the thumbstick for “snap-turn” rotation
in discrete 45◦ intervals. Furthermore, the user can shrink the scene
to interact at different scales, e.g. to define the VOI or perform
brushing on structures that are not within arm’s reach.

3.4. Implementation

We implemented our method as a C++ library. An accompanying
Unreal Engine 4 (UE4) plugin, together with a rendering plugin for
textured splats, enables the user to perform the segmentation in a
Virtual Reality (VR) environment. For graph-related algorithms we
use the Boost Graph Library (BGL). To compute the kNN graph,
we use nanoflann [BR14] to accelerate the nearest neighbor search.
Image processing and computer vision tasks are implemented with
the Open Source Computer Vision Library (OpenCV) [Bra00].

4. Results and Discussion

In the following, we present a series of experiments to evaluate
our proposed segmentation method. We assess the design decisions
by measuring the segmentation accuracy for different feature and
parameter combinations. Finally, we compare the achievable ac-
curacy to a baseline segmentation that uses only the average splat
color. The segmentation accuracy is measured as the Jaccard in-

dex between two sets of splat indices: a manually created ground

Windows Shrine Pulpit Statue Chairs
Vertices 35,278 13,188 21,925 7,559 13,265
Edges 380,048 144,224 236,334 81,750 143,262

Table 2: Number of graph vertices and edges inside the volume of

interest for our test cases, including terminal and reverse edges.

truth segmentation and the segmentation result of our method. It is
defined as the intersection of the two sets over their union:

J(A,B) =
A∩B

A∪B
(3)

Furthermore, we measure the computation times for the different
stages of our method. For the interactive segmentation, we aim at
around five seconds between starting the computation and display-
ing the result to the user. Preparation steps, like constructing the
kNN graph or pre-computing features and pairwise potentials, are
less time-critical, but should also be within reasonable time bounds.

4.1. Experiments

As our test data set, we use a 3D scan of the Aachen cathedral in-
terior. The data set consists of roughly 6 million point samples, ac-
companied by 441 PNG images of different views of the scene, us-
ing 8 bits per RGB color channel and a resolution of 3680 × 2456
pixels. From these images, a 64 × 64 pixels splat texture is sampled
for every point and used to extract the texture-based features.

We used k = 6 for the kNN graph and the final graph has around
65 million directed edges, after adding the terminal nodes and re-
verse edges. The graph construction takes around 15 seconds. All
experiments were performed on a Windows 10 system with the fol-
lowing specifications: Intel Xeon E3-1230 v3, 16 GB RAM, Nvidia
Geforce GTX 1060 6GB, Samsung 860 EVO 1TB SSD.

4.1.1. Test Cases

For the evaluation, we selected five test cases of varying size and
complexity (see Figure 8). Some have a more complex geometry
(shrine, pulpit, statue), while others include multiple objects (win-
dows, chairs) or a higher color variance (windows). The number of
vertices and edges of the test cases are shown in Table 2. Here, the
terminal nodes / links and reverse edges are included.

We manually created input labelings using our interactive VR
application, like a user could potentially label the scenes (see Fig-
ure 8). In most cases, only the Foreground (green) had to be man-
ually labeled as the border of the volume of interest was implicitly
labeled as Background (red). Note that such a sparse labeling can
be created in a matter of seconds.

To measure the segmentation accuracy, we manually created a
ground truth segmentation for each test case. Here the depth per-
ception in VR and the use of the 3D motion controllers provided a
great advantage over a 2D display with ray picking. Using the lat-
ter, it was very difficult and time-consuming to create an accurate
ground truth labeling, particularly for test cases with more complex
geometry and protruding or occluded parts. Creating the labeling
in VR was nevertheless tedious and took up to 30 minutes per test
case, which underlines the motivation for this work.
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(a) Windows: 0.8865 (b) Shrine: 0.9692 (c) Pulpit: 0.8412 (d) Statue: 0.9061 (e) Chairs: 0.9272

Figure 8: Segmentation results on our test cases. Top: textured splat rendering. Center: Labels used for the evaluation. Bottom: Initial

segmentation result. The segmentation accuracy is given in the caption. Incorrectly labeled splats are highlighted in blue.

4.1.2. Unary Potentials

We first measured the segmentation accuracy using only unary po-
tentials. To do so, we computed the Jaccard index for the splat la-
bels predicted by the SVM (see Section 3.2.3) and the ground truth
labels. We did not perform extensive hyper-parameter optimization
for the SVM. Table 3 shows the segmentation accuracy using the
different features (see Section 3.2.1). Features in the CIELAB color
space generally performed worse on our test cases. Therefore, we
used RGB features for unary potentials in all further experiments.

We accumulated feature vectors over a splat’s neighborhood with
radii ranging from 0 to 20 cm (see Section 3.2.2). The resulting
segmentation accuracy for the average color and for gradient his-
tograms is shown in Figure 9. Since a higher radius also impacts
computation time, we did not simply pick the radius that yields the
highest accuracy. For the following experiments, we chose an ac-
cumulation radius of 5 cm for the average color and a radius of 10
cm for all histograms.

By combining color and gradient features, the segmentation ac-
curacy notably improved compared to using single features (see
Table 3). Furthermore, accumulating features with the previously
determined radii had an even bigger impact on the segmentation
accuracy. While color and gradient features can be weighted differ-
ently, we found that equal weights were already a good choice.
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(a) Avg. Color RGB

0 5 10 15 20
0.6

0.65

0.7

0.75

Radius [cm]

(d) Gradient Hist.

Figure 9: Segmentation accuracy for different accumulation radii.

Single Accumulated
Avg. Color RGB 0.619 0.626
Avg. Color RGB + Gradient Hist. 0.712 0.809

Color Hist. RGB 0.711 0.721
Color Hist. RGB + Gradient Hist. 0.724 0.782
Color Hist. 3D, RGB 0.684 0.715
Color Hist. 3D, RGB + Gradient Hist. 0.747 0.822

Gradient Hist. 0.664 0.721

Table 3: Segmentation accuracy for different unary feature combi-

nations and feature accumulation within a neighborhood.
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ARGB Avg. Color RGB

H1D, RGB Color Hist. RGB

H3D, RGB Color Hist. 3D, RGB

GH Gradient Hist.

Features Train (ms) Predict (ms) Total (s)
ARGB + GH [185,758] [35,159] [2.65,6.67]
H1D, RGB + GH [311,2423] [64,535] [3.47,17.67]
H3D, RGB + GH [2597,19435] [568,4381] [17.86,129.17]

Table 4: Min. and max. times for different feature combinations.

SVM training and prediction in milliseconds per iteration. Training

times ignore the first cut, because training is much cheaper for the

sparse labeling. Total times in seconds for four cut iterations.

Average
Avg. Color RGB 0.852
Avg. Color CIELAB 0.828
Color Hist. RGB 0.844
Color Hist. CIELAB 0.862

Color Hist. 3D, RGB 0.840
Color Hist. 3D, CIELAB 0.854

Gradient Hist. 0.863

Table 5: Segmentation accuracy of pairwise potential features.

As the unary potentials have to be repeatedly updated before
computing a minimum s-t cut, it is desirable that training the SVM
and computing the unary potentials is as fast as possible. Table 4
shows the required minimum and maximum times for training the
SVM on the combined features and computing the unary potentials
for all splats in the volume of interest. While 3D histograms yielded
the best results, we accept a slightly lower accuracy in favor of a
faster computation time and use the feature combination of average
color and gradient histogram in all further experiments.

4.1.3. Pairwise Potentials

With the unary potentials defined, we evaluated the effect of the
pairwise potentials. We measured the overall segmentation accu-
racy using different features and kept all parameters for the unary
potentials fixed. We used the same accumulation radii as for the
unary potentials. Table 5 shows the resulting segmentation accu-
racy. Here, we used the earth mover’s distance to compare color
histograms and exp(−d) to compare the average color and the gra-
dient histograms, where d is the Euclidean distance.

Using pairwise potentials notably improved the segmentation ac-
curacy. Gradient histograms outperformed the other features, how-
ever by a small margin. In further tests we found that a combina-
tion of color features and gradient histograms did not significantly
improve the segmentation accuracy. We tested the different com-
parison measures (Hellinger, χ2, Earth Mover’s Distance) for color
histograms and found that it had a negligible impact on the result-
ing accuracy. The required times to compute the pairwise potentials
for the test cases ranged from about 10 to 100 seconds.

As the pairwise potentials do not have to be computed at run-
time, we decided to use 3D color histograms with EMD in addi-

(a) Iteration 1 (b) Iteration 4

2 4 6 8 10
0.85

0.9

0.95

(c) Jaccard Index

Figure 10: Segmentation result over multiple graph cut iterations.

Windows Shrine Pulpit Statue Chairs Average
Base 0.611 0.701 0.627 0.717 0.931 0.717
Ours 0.887 0.969 0.841 0.906 0.927 0.906

Table 6: Comparison of the segmentation accuracy for our method

and a segmentation with only the average color as a feature (base).

tion to gradient histograms in all further experiments. Although the
combination performed neither significantly better nor worse than
gradient histograms alone, we believe that this choice generalizes
better to new datasets since more information is retained.

4.1.4. Iterated Graph Cuts

By computing multiple graph cut iterations, the segmentation accu-
racy could be improved further without additional user input. Fig-
ure 10 (a) and (b) show how missing or incorrectly labeled regions
are corrected after multiple iterations. However, we found that in
some cases the iterated segmentation does not converge to a stable
solution and, depending on the scene, can deteriorate after many it-
erations. In our experiments, we found four iterations to be a good
choice (see Figure 10 (c)). Using this limit, we achieve computa-
tion times of around 5 seconds between starting the segmentation
and displaying the result to the user (see Table 4).

4.1.5. Baseline Comparison

Table 6 shows the segmentation accuracy of our method using color
and gradient histograms as features, accumulating features over the
splat neighborhood and computing multiple graph cut iterations.
We compare to the baseline that uses only the average color as a
feature, without accumulated features and iterated graph cuts. Our
method performed significantly better in almost all cases. Although
using iterated graph cuts for the baseline improved the accuracy in
some cases, it reduced the overall accuracy. Note, that we measured
the segmentation accuracy in our experiments on a fixed set of in-
put labels and without further user interaction. Figure 8 shows the
initial segmentation results for our test cases.

4.2. Discussion

We achieved high segmentation accuracies on our test cases and
were able to compute the segmentation in about five seconds to
achieve an interactive workflow. We showed that texture-based fea-
tures are beneficial and particularly the gradient histograms had
a positive impact on the segmentation accuracy. Furthermore, the
segmentation of multiple objects at the same time is possible and
provided good results.
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The size of the used dataset of approximately 6 million points is,
however, just at the boundary of interactivity. When we tested the
method on another similar but much larger dataset with approxi-
mately 71 million points, we were no longer able to stay within our
prescribed bounds regarding computation time. While the segmen-
tation algorithm can run non-interactively, we lose the benefit of
being able to observe and improve the result while being immersed
in the virtual environment. Note that the size of the full dataset is
not the limiting factor, but the number of points within the ROI
and thus the size of the graph cut problem. An interesting avenue
for future work would be to reduce the size of the problem with a
heuristic that aggregates similar adjacent splats that are unlikely to
be part of the segmentation boundary.

Generating the feature files for large graphs also required high
computation times and disk space. For example, generating the
three-dimensional RGB color histogram for the larger data set took
around 8 hours and required 135 GB of disk space. As the color
histograms are very sparse, signatures could be used instead to re-
duce the required disk space (see [RTG00]). This could also reduce
the required time to access the feature vectors at runtime.

Furthermore, finding suitable features and parameter values
was challenging and time-consuming. Exploring data-driven ap-
proaches such as [NAS*17] would be beneficial, for which our
method can serve to quickly generate real-world training examples.

Using iterated graph cuts did not always reliably improve the
segmentation result and in some cases even deteriorated to an un-
usable result. To counter this, we chose a fixed number of iterations
that we found worked well with our data set, but our method still
needs work in this regard to become more robust.

We found that the interaction in our VR application worked very
well and has many advantages compared to using a mouse and key-
board setup. However, this is only our own experience, as no formal
usability study was conducted.

5. Conclusion

We presented an interactive method for the segmentation of tex-
tured point clouds. It employs the high-resolution photographs used
for textured splat rendering as the discriminative feature. We could
show that our approach increases the achievable segmentation ac-
curacy significantly compared to using an average color per splat.
We implemented an interface to our algorithm in an immersive vir-
tual environment. This supports the user’s workflow with improved
spatial perception and the ability to interact directly with the 3D
point cloud. With the presented technique, users can create accu-
rate segmentations of textured point clouds fast and conveniently.
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