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Figure 1: Our proposed method compresses textured point clouds via sparse coding. We optimize a dictionary of atoms (each 32×32 pixels)

and represent each splat texture as an average color plus a weighted sum of these atoms. With colored splats only, all high frequency content

is lost (left). When adding a single atom, the quality is already improved significantly (center). Our approach can adapt the number of atoms

per splat depending on texture content and the desired target quality.

Abstract

Splat-based rendering techniques produce highly realistic renderings from 3D scan data without prior mesh generation. Map-

ping high-resolution photographs to the splat primitives enables detailed reproduction of surface appearance. However, in many

cases these massive datasets do not fit into GPU memory. In this paper, we present a compression and rendering method that

is designed for large textured point cloud datasets. Our goal is to achieve compression ratios that outperform generic texture

compression algorithms, while still retaining the ability to efficiently render without prior decompression. To achieve this, we

resample the input textures by projecting them onto the splats and create a fixed-size representation that can be approximated by

a sparse dictionary coding scheme. Each splat has a variable number of codeword indices and associated weights, which define

the final texture as a linear combination during rendering. For further reduction of the memory footprint, we compress geomet-

ric attributes by careful clustering and quantization of local neighborhoods. Our approach reduces the memory requirements

of textured point clouds by one order of magnitude, while retaining the possibility to efficiently render the compressed data.

CCS Concepts

• Computing methodologies → Point-based models; Texturing; Image compression;

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



K. Schuster, P. Trettner, P. Schmitz, J. Schakib, L. Kobbelt / Compression and Rendering of Textured Point Clouds via Sparse Coding

1. Introduction

Digital 3D reconstructions capture the geometry and appearance of
real-world objects and environments based on non-invasive imag-
ing technology. They enable faithful replications of locations and
buildings, which can be explored interactively everywhere and at
any time. Such reconstructions are increasingly important in areas
such as cultural heritage preservation, education in history and ar-
chitecture, or virtual touring and telepresence applications.

High-precision terrestrial laser range scanners, camera-based
depth sensors, or image-based 3D reconstruction by structure-
from-motion offer a number of mature technologies to capture real
environments with ever-increasing resolution and detail. The result-
ing datasets typically contain massive amounts of point cloud data
combined with a large number of photographs. For high-precision
laser range scanners, a reconstructed scene can easily consist of
hundreds of high-resolution images and billions of 3D points.

One way to visualize such datasets is to render the point cloud
data directly, without intermediate surface mesh extraction. For
that, points are expanded to small disks, so-called splats, within
their local tangent plane. This is sufficient for visual reproduc-
tion, but requires less manual preprocessing work. Automatically
generating topologically accurate meshes from 3D scan data is of-
ten problematic due to insufficient sampling density [KBH06], and
does not improve the visual quality. Point-based rendering tech-
niques don’t suffer from this limitation and can yield highly real-
istic renderings. High-quality splat rendering techniques use pho-
tographs for perspectively correct texturing, and perform shading
based on a smoothly varying normal field for precise surface ap-
proximation [BHZK05].

While high-quality reproductions are possible this way, stor-
ing many high-resolution photographs in GPU memory for tex-
ture mapping quickly becomes a limiting factor. Existing meth-
ods solve the problem by page-based streaming of splat textures
[SBMK20]. However, for their vast amount of data (1.2 terabyte
on their dataset), they require high-end systems with large storage
bandwidths and cause a continuously high CPU load for on-the-fly
decompression. This can be prohibitive for many potential applica-
tions and target systems.

Our goal in this paper is to enable high-quality reproduction of
textured point cloud data without the bandwidth and CPU overhead
induced by streaming approaches. Instead, we devise an efficient
compression scheme that drastically reduces the memory footprint
of such datasets. This enables high-quality textured point cloud ren-
dering on a wider range of target systems, and removes the contin-
uous system load to enable new types of applications.

To this end, we propose a texture compression method that is tar-
geted specifically at textured splat rendering. By using fixed-size
snippets of input textures projected onto each splat as the basis
of our representation, we leverage the advantages of block-based
compression without introducing the typical compression artifacts.
As neighboring splats are blended like described in [BHZK05], po-
tentially visible block boundaries are concealed. A sparse coding
technique finds an optimized representation of the texture content,
that is reconstructed during rendering by weighted blending of a
small number of atoms from a learned dictionary. We furthermore

propose a compression scheme for the geometric attributes. Splat
positions are clustered and encoded as local coordinates, and then
quantized together with normals and cliplines into a representation
that is suitable for uploading onto the GPU.

The resulting method permits random memory accesses for the
compressed texture and geometric data, which is crucial for effi-
cient evaluation during rendering. Our approach can furthermore
be adapted to different memory and GPU performance budgets,
by choosing a variable dictionary size and number of atoms per
splat. We achieve compression ratios that outperform generic tex-
ture compression algorithms, while not suffering from visible block
artifacts. We achieve PSNR scores comparable to input textures that
have been downsampled once, but the perceived visual quality is
superior at a much lower memory footprint. With our method, we
are able to compress a dataset of 71 million splats, textured with
441 high-resolution photographs, to about 1 GB of GPU memory.

Our contributions to the efficient rendering of large textured
point clouds can be summarized as follows:

• Compression of splat textures via sparse dictionary encoding
• Compression of splat geometry via clustering and quantization
• Efficient direct rendering of the compressed per-splat data

2. Related Work

2.1. Point Cloud Compression

Captured point clouds tend to be quite memory-intensive and thus,
their compression is well-researched.

Several existing methods use octrees to efficiently encode po-
sitions, and simultaneously provide culling and level-of-detail
[SK06]. De-duplicating similar subtrees leads to sparse voxel
DAGs [KSA13; DKB*16; VMG17]. Instead of the uniform sub-
division of octrees, DE QUEIROZ and CHOU use a k-d tree and
predictive coding to better adapt to the data [dC16]. FAN et al.
use hierarchical clustering for compression and level-of-detail and
achieve less than one bit per normal-equipped point at good quality
[FHP13].

Traditional image compression schemes can also sometimes be
employed. One main source of point clouds is LiDAR sensor data,
which is effectively a cylindrical heightmap and can thus directly
benefit from traditional image compression [CTMT16]. In a more
general setting, HOUSHIAR and NÜCHTER create panorama im-
ages of the point cloud and compress those [HN15]. Strong com-
pression is especially required when continuous streams of point
clouds are captured. THANOU et al. use a graph-based compression
approach that is suited for scans of moving people [TCF16]. TU et
al. focus on scenarios where the scanner itself moves and employ
SLAM based predictions for higher compression [TTMT17].

The strong predictive capabilities of neural networks can be used
for compression as well. TU et al. compress LiDAR data using re-
current networks [TTCT19], and WANG et al. use variational au-
toencoders for scanned objects [WZM*19].

For rendering, the point clouds must fit into GPU memory and
are decoded on-the-fly. From the previous works, only the sparse
voxel DAGs are suited for direct rendering. Other approaches that
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support this try to find regions of the point cloud that can be approx-
imated by a regular heightmap. These heightmaps can be stored and
rendered as progressive quadtrees, the individual entries encoded
via vector quantization [SMK07; SMK08].

Due to its importance, there have been several surveys and even
standardization efforts by the MPEG for point cloud compression
methods [SPB*19; LYL*20; GNK*20].

2.2. Sparse Coding

Learning sparse dictionaries to compress or represent data is a pow-
erful approach in many domains. Popular algorithms for learning
these dictionaries are matching pursuit [MZ93], orthogonal match-
ing pursuit [RK95] and k-SVD [AEB06].

In geometry processing, sparse coding can for example be used
to reconstruct surfaces [RXX*17], compute point cloud super-
resolution [HCDC18], or provide compact representations of large
terrains [GDGP16]. DIGNE et al. build a sparse dictionary of
local tangent heightmaps and exploit self-similarity for com-
pression [DCV14]. For more complete surveys, see [XWZ*15]
or [LOM*18].

2.3. Image Compression

Our use case is rendering of textured point clouds via splats. Here,
the amount of texture data exceeds the geometric data. Generic im-
age compression such as PNG or JPEG are hard to decode during
rendering, thus we focus on techniques that provide efficient ran-
dom access.

There are several texture compression algorithms that have hard-
ware and driver support from the graphics cards. Most notably,
S3TC [Bro00] and BPTC [WD10], which are supported by all
major GPU hardware and graphics APIs. ASTC [NLP*12] pro-
vides even better compression, but the hardware support on desk-
top GPUs is very limited. These methods are all block compres-
sion schemes and compress a fixed texture region, e.g. 4×4 pixels,
in a fixed memory space, e.g. 128 bit. This fixed compression ra-
tio enables extremely efficient hardware implementations and pre-
dictable performance. In the area of transform-based approaches,
DCT [HPLW12] and DWT [MP12; ALM17] texture compression
have been proposed and especially the latter can outperform the
conventional block-based methods in terms of compression perfor-
mance. For our use case, the compression ratios are typically not
high enough.

Closer to our method are approaches based on sparse coding that
learn dictionaries to encode blocks of images [ZGK11; PPKD15;
SD17]. These methods often require significant computation time
to encode the image but tend to have larger compression ratios for
the same quality. Every block in the reconstructed image is a linear
combination of a small number of dictionary atoms, which enables
efficient random access. The results in [SD17] reveal that quality
and compression ratio can be comparable to JPEG and JPEG2000
which, however, do not provide the crucial random access. BRYT

and ELAD furthermore compare k-SVD to dimensionality reduc-
tion via Principal Component Analysis (PCA) for compression of

images divided into fixed-sized square patches. They show that k-
SVD performs significantly better in terms of the root-mean-square
error (RMSE) for a given memory budget.

2.4. Rendering

There are different approaches to render large point clouds effi-
ciently. This is in essence a surface reconstruction problem from a
sampled input.

The first type of method renders colored splats. ZWICKER et al.
reconstruct the surface color using an elliptical weighted average
filter [ZPVBG01]. BOTSCH et al. improve the lighting by phong
shading on elliptical splats [BSK04]. For increased performance,
BOTSCH, HORNUNG, ZWICKER, and KOBBELT propose a multi-
pass algorithm that uses a depth pre-pass to blend splat attributes in
a narrow band around the top-most surface and compute the final
color via deferred shading [BHZK05].

Point clouds can also be rendered as individual points fol-
lowed by an image-space reconstruction step. MARROQUIM et al.
use a push-pull procedure to interpolate between rendered points
[MKC07]. In [SEMO14], approximate convex hulls are computed
and a hidden point removal operator is used for image-space point
cloud rendering.

For large, dense point clouds, rendering each point as a single
pixel might be visually feasible and the challenge is to process the
large number of points. WIMMER and SCHEIBLAUER devise an
out-of-core algorithm that efficiently renders an view-appropriate
sub-sampling of a point cloud that is too large for the CPU mem-
ory [WS06]. GÜNTHER et al. show that the typical triangle pipeline
might be suboptimal for point rendering and how a GPGPU-only
pipeline can be faster [GKLR13]. SCHÜTZ et al. present a progres-
sive rendering system for rendering point clouds with multiple hun-
dreds of millions of points [SMOW20].

Finally, combinations of splats and textures have been used
to render high-fidelity captures of real-world data. WAHL et al.
fit quads to the point cloud and creates a texture atlas for them
[WGK05]. Similarly, GARCÍA et al. fit elliptical splats to build the
atlas [GPBM15]. Often, the textures are captured from cameras and
splats can be projected onto the camera image plane for texturing.
An efficient way to dynamically select which camera to use for
minimal occlusion is proposed in [YGW06]. SCHMITZ et al. use el-
lipsoidal splats and virtual texturing to render a 1.2 terabyte dataset
in real-time for VR [SBMK20].

Our approach can be seen as a combination of dictionary-based
image compression with a point cloud renderer based on blended
textured splats, similar to [BHZK05].

3. Textured Point Cloud Compression and Rendering

3.1. Overview

Our method achieves high texture compression ratios by leverag-
ing a sparse coding strategy on fixed-size texture snippets for each
splat. It creates a set of dictionary entries, which we call atoms, that
is optimized for the specific texture content of the input data.

To this end, we first project each splat into its associated camera
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Figure 2: The basis of our compression method is a learned dictionary that we use to reconstruct splat textures from a sparse representation.

Each splat stores an average color and a variable number of atom indices di,T and weights xi,T . During rendering, we sample each atom

from the dictionary, multiply by xi,T , and add it to the average color. The diagram shows an example reconstruction of a splat using 3 atoms.

Similarly to frequency-domain techniques, our learned dictionaries tend to capture low frequencies first. In practice, we use as many atoms as

needed to reach a given quality target, with a global limit of 8 atoms. For comparison, the top right image shows a DFT reconstruction from

the dominant 3× 32 coefficients which has roughly the same quality as our depicted reconstruction. Our data-adaptive dictionary provides

sparser reconstructions than the generic DFT basis.

texture and resample it to a fixed-size representation (Section 3.2).
Note that this is slightly different from conventional texture com-
pression, where textures are divided into blocks of fixed size: we
consider every splat to be a resampled texture portion of fixed reso-
lution so that the terms splat texture and block are interchangeable.
On these uniform blocks of texture content, a sparse decomposi-
tion is performed via the k-SVD algorithm [AEB06], that yields
a set of dictionary atoms and a varying number of weight coeffi-
cients that encode the texture with a desired approximation quality
(Section 3.3). The motivation for using k-SVD for data reduction
is two-fold. On the one hand, it was shown to provide good trade-
offs between image reconstruction quality and compression ratio
(cf. [SD17]). On the other hand, reconstructing texture portions
via linear combinations of a small number of atoms is possible so
that random access becomes feasible. An example splat and its first
three atoms is shown in Figure 2. For comparison, we added a re-
construction from a Discrete Fourier Transform (DFT) using the 32
largest coefficients per color channel. The number of coefficients
has been chosen so that the reconstruction quality is roughly com-
parable to our depicted reconstruction. Even though the number of
coefficients could be reduced, e.g. by distributing them non-evenly
on the color channels (as is done for JPEG by converting the color
space to YCbCr), it is easy to see that our overcomplete dictionary
can better adapt to the data with small numbers of coefficients.

The dictionary indices and corresponding weights for each splat
are then quantized to yield a memory-efficient representation on the
GPU that is suitable for immediate rendering (Section 3.4). Simi-
larly, the geometric attributes of each splat are quantized to further
reduce the GPU memory footprint. Splat positions are first encoded
as local coordinates within spatial neighborhoods (Section 3.5).

Finally, the compressed splat representation is rendered, by de-
coding the geometric data in the vertex shader, and reconstructing
the texture content per output pixel in the fragment shader via linear
combination of the dictionary atoms (Section 3.6).

3.2. Splat Texture Generation

The input to our method is a number of camera views with an in-
trinsic and extrinsic camera matrix and associated rectified pho-
tographs. Each splat in the input dataset is assumed to have uniform
size in object space and stores a position and normal vector plus an
identifier of its associated camera view. To leverage a sparse dic-
tionary coding strategy, our input textures are first resampled into
fixed-size snippets for each splat in the dataset.

First, we compute the world coordinates of each splat’s four cor-
ner points. Due to their rotational symmetry about the normal axis,
the choice of the tangent space is arbitrary, but must be consis-
tent between splat resampling and rendering. For example, it can
be computed from the orientation of the normal and its alignment
with the global global coordinate axes.

The splat corners are then projected into the texture of the asso-
ciated camera view. We apply projective texture mapping with bi-
linear interpolation to resample the input texture to a fixed-size grid
of texels that is aligned with the splat’s local tangent directions. We
resample the full rectangle area instead of just the circular inner
part to use in the subsequent dictionary generation step. On the one
hand this simplifies the texture lookup, because the boundary does
not need special treatment, and on the other hand enables to use
hardware-support for mipmap generation. We found 32×32 splats
to be the sweet spot in our test case: the resampling quality is very
high (52.63 dB) while data size is still manageable.

3.3. Splat Texture Compression

The total amount of data of the generated splat textures is typi-
cally much larger than that of the input textures due to overlapping
of splats. Apart from the overlapping areas, there is further redun-
dancy because of repeating details or uniformly colored areas that
spread over multiple splats. In order to store splat textures com-
pactly, we propose to learn a dictionary of splat-sized atoms using
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the k-SVD algorithm [AEB06] and perform the sparse coding of
splats via Orthogonal Matching Pursuit [MZ93; RK95].

The per-splat RGB textures, as well as the dictionary entries that
encode them, are treated as vectors of dimension n = 3 · s2, where
s is the resampled splat texture size (e.g. 32). Following the no-
tation of [AEB06], we approximate the non-constant part yi of a
splat (the splat texture with the average color subtracted) as linear
combination of a small number T i

0 of learned atoms:

yi ≈
T i

0

∑
T=1

xi,T di,T (1)

The coefficient xi denotes the influence of the dictionary entry
(atom) di when reconstructing the splat yi. T i

0 is the smallest num-
ber of atoms necessary to reconstruct yi under a given error bound,
and further restricted by a global upper bound T0:

T
i

0 6 T0, ∀i ∈ {1, ...,#splats} (2)

Note that the constant part (the splat’s average color) is even-
tually added for the final reconstruction but is not part of the op-
timization. It would be possible to not regard the color separately
and also reconstruct it using the dictionary. However, that would
require at least one texture fetch even for uniformly colored splats.

The dictionary D = [d1, ...,dK ] ∈ R
n×K consists of K atoms of

dimension n. In the case of a 12 bit dictionary and 32× 32 RGB
splats, D has the size 3072×4096.

For the compression of all splat textures Y =
[

y1, ...,y#splats
]

, we

want to find a dictionary D and coefficients X =
[

x1, ...,x#splats
]T

so that

‖Y −DX‖→ min s.t. ‖xi‖0 6 T0 ∀xi ∈ X (3)

Generally speaking, we want to find the dictionary D that best de-
scribes the splat data while requiring the atom count per splat to be
less than a predefined number T0. This requirement ultimately en-
forces the sparsity in the coefficient vectors xi, which is important
for an efficient reconstruction.

After initializing the dictionary D with a random subset of our
inputs Y , we train it by alternatingly performing two operations:

1. Find the best sparse coding X of inputs Y given the current dic-
tionary D.

2. Find the best dictionary D for the sparse coding X .

For the first step, we employ the greedy Orthogonal Match-

ing Pursuit [MZ93; RK95]. We successively project all dictionary
atoms onto the input splats and subtract the projections that de-
crease the residual errors the most. Inputs and atoms are required
to be normalized, so that the weight coefficient can be computed
as the scalar product between the two vectors. The described pro-
cedure is repeated until either the residual error is below a prede-
fined threshold or a maximum number of used atoms T0 is reached.
Throughout our experiments we set T0 := 8 as we found the mod-
erate error decrease for larger T0 could not justify the increased
evaluation/rendering cost (cf. Figure 9). By orthogonalizing the re-
sult, the residual error can often be decreased further. Given the in-
put vector and the best atoms to approximate it (found in a greedy

fashion), a linear regression provides optimal atom coefficients in
the least-squares sense.

Once all input splats have been approximated and we obtained
up to T0 atoms and accompanying coefficients for each of those,
the dictionary can be updated using the k-SVD algorithm [AEB06].
Every dictionary atom dk ∈ D is updated independently and we
collect all input splats yi that use it in their approximate reconstruc-
tions. To determine the influence of di on the reconstruction of a
splat that uses it, the contribution of all other (up to T0 − 1) atoms
is subtracted from the respective input vector yi. This process is
repeated for all splats that use dk so that we receive a variety of
residual vectors that should be matched by an updated dk as well
as possible. For that, we construct a matrix Ek with those vectors
as columns. The number of rows is the dimensionality of the splat
data, e.g. 3072 for 32× 32. Computing a singular value decompo-
sition E = UΣV T enables the creation of a rank-1-approximation.
The first column of U yields the updated version of the normal-
ized atom dk, while the multiplication of Σ(1,1) with the first row
of V T are the new dk-coefficients for the splats that use this atom
in their reconstructions. After optimizing all atoms dk, the updated
dictionary D can be used in the next sparse coding iteration.

The full optimization procedure is stopped after a fixed num-
ber of iterations, or when the average reconstruction error does not
decrease significantly anymore. Convergence is guaranteed, since
both steps cannot increase the approximation error. However, it
should be noted that the found solution is not necessarily a global
optimum. The output of the algorithm is the dictionary D and for
each input splat the average splat sRGB color and up to T0 pairs of
atom indices into D and corresponding weights.

Implementation Notes

In the following we want to share some details that will be helpful
to implement our method.

To find the best-matching atom for each each splat during the
sparse coding step, we do not have to test all atoms with linear
time complexity. Instead, we can employ an accelerated search via
a k-d tree and L2 distances. Since the atoms are normalized, order-
ing of distances between the query splat and an atom is the same
for L2 and cosine distance if both vectors are located on the same
hemisphere. Therefore, the original atom as well as its negative are
added to the search space to also take solutions pointing away from
the query into account which is accounted for by a negative atom
weight. The k-d tree search can be further accelerated by employing
a best bin first strategy [BL97] which yields good approximations
at reduced search time.

It should be noted that the atom search during sparse coding, as
well as the dictionary updates, can be highly parallelized. During
the dictionary update step, AHARON et al. observed faster conver-
gence when using already-updated atoms for subsequent updates
in the same iteration [AEB06]. Due to the small size of our dictio-
naries, we chose to keep two independent copies (one to read from
and one to write into), which enables us to perform the update in a
highly parallel fashion without locking.

When computing the largest eigenvector for the dictionary up-
date, we already have a good initial estimate. Therefore, we do not
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need a costly SVD, but can rely on a few power iterations, where
10 was typically sufficient in our test cases.

The size of our resampled splat textures (approx. 200GB for
32×32 RGB splats) can exceed the available memory budget dur-
ing dictionary learning. Furthermore, the memory requirements of
the update step largely depend on how many splats have been as-
signed to a particular atom. For very small dictionaries and large
splat counts, the average number of occurrences for every atom is
very high and can result in excessive memory usage. This can be
circumvented by implementing the dictionary learning in an out-
of-core fashion by performing the update steps independently per
atom. The relevant splats can be loaded from disk on demand and
do not have to be kept in main memory.

3.4. Splat Textures and Atom Quantization

While the original texture data requires significantly more space
than the compressed splat data, the latter must not be ignored either.
Each splat references a small, variable number of atom indices and
weights. At an average of four atoms per splat, 32 bit integer in-
dices and floating point weights would amount to 32 byte per splat,
requiring 2.27 GB for our test dataset of 71 million splats.

Thus, we limit the index size to k bit, which results in a dictionary
size of 2k atoms, and heavily quantize the weights. Furthermore, we
split the dataset into batches according to the number of required
atoms, making that information implicit. This has the added benefit
of speeding up the rendering (cf. Section 3.6.1). Note that the quan-
tization of the atom weight should be incorporated into the sparse
coding: the additional error from quantizing the contribution of the
nth atom can be considered when choosing the n+1-th atom.

The size of the atoms has a strong influence on the compression
rate and feasible quantizations. Small atoms (e.g. 8×8 or 16×16)
save some space by reduced dictionaries and correspondingly small
atom indices. However, a much higher number of splats is neces-
sary to achieve a desired object-space resolution. On the other hand,
large atoms (64×64 and above) require large dictionaries to accu-
rately reconstruct the splat textures. So large, in fact, that the size
of the dictionary becomes non-negligible. Thus, our experiments
indicate 32×32 as the compression sweet spot and will be used for
the rest of this paper. Note that for regions where much lower tex-
ture resolutions would suffice, rendering time is usually not wasted
because of automatically fetching from coarser mipmaps. Non-
power-of-two textures are theoretically possible, but interfere with
mipmapping, especially if the dictionaries are not stored in an array
texture.

Given this texture size, we evaluated atom indices of 8, 12, and
16 bit and corresponding dictionaries with 256, 4096, and 65536
atoms. The weight quantization was chosen as the smallest possi-
ble range that does not introduce large reconstruction errors and is
convenient for packing into GPU buffers. We settled for 4, 4, and
8 bit, leading to the three evaluated versions D8W4, D12W4, and
D16W8. Table 1 lists the total sizes and bit rates on our sample
dataset.

The average splat texture color is stored as 24 bit sRGB color per
splat. Approaches to further quantize the color, e.g. the common

R5G6B5 compression (5 bit red, 6 bit green, 5 bit blue), lead to a
visible quality degradation, e.g. because of banding.

3.5. Geometry Compression

Our main focus lies on compressing the texture data, which domi-
nates the memory consumption. After our dictionary compression,
the texture data stored in the dictionary is now negligible, but we
added 63–109 bits per splat for average color, atom indices, and
weights.

The geometric data per splat is a 3D position, a normal, and op-
tionally a clipline for improved rendering of sharp features. Un-
compressed, this amounts to 288 bit per splat and thus cannot be
ignored. While offline compression methods can often reduce this
to 10 bit and below, they are difficult to adapt to rendering in a
memory-constrained setting, i.e. when the data must be decom-
pressed on-the-fly. Instead, we use heavy quantization with addi-
tional clustering for positions. The result is roughly 54 bits per
splat.

3.5.1. Position

Laserscans of entire scenes are usually not amenable to direct quan-
tization of their point positions. The bounding box is too large
and quantization would either lead to unacceptable loss of quality
or low compression ratios. Instead, we decompose the scene into
small boxes of K points each. For each of these chunks, we store
a floating point position and size. The memory cost is well amor-
tized over the K points. As each chunk, except potentially the last,
has exactly K points, the association between point and chunk is
implicit: given point index i, the chunk has index ⌊i/K⌋. Each splat
then only stores its relative position with a total amount of 24 bit
and linearly interpolates the chunk bounding box. The distribution
of the 24 bits depends on the shape of the box and is proportional
to the binary logarithms of the extents. E.g., if the side lengths of a
chunk are a, 2a and 4a, the distribution of bits is 7, 8 and 9.

We compute the chunks via a simple recursive median split strat-
egy. Given a point cloud, we compute its axis-aligned bounding box
and split along the largest axis. For that, we sort the points along
the coordinate axis that we want to split. The actual split is not per-
formed at the exact median, but at the index that is a multiple of K

and closest to the median, thus ensuring that all chunks except the
last always have exactly K points. We recursively apply this scheme
down to chunks of size K.

For our test dataset, we use K = 128. The average distance error
is 0.326mm at a splat radius of 20mm. Each splat stores its position
in 24 bit with additional 1.75 bit amortized from the per-chunk data.
Figure 3 shows an excerpt of the chunks computed for our dataset.

We implemented and compared this simple scheme against the
oriented bounding box fitting from [LK11]. However, this in-
creased the preprocessing time significantly while slightly decreas-
ing the quality. The reason for that is that the additionally stored
orientation requires to increase K, which increases the error at equal
data size per position.
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Figure 3: A median split strategy is used to compute clusters of K =
128 splats (red bounding boxes). A cut-out and a close-up of our

dataset is shown. The splat positions can be heavily quantized by

storing them relative to their chunk bounding box. The per-chunk

extra data is negligible when amortized over all splats.

Figure 4: Per-splat cliplines are used to improve reconstruction of

sharp features. This is especially visible at silhouettes of edges. A

close-up example is shown with cliplines (left) and without (right).

3.5.2. Normal and Clipline

Two additional geometric attributes are stored per splat. First, each
splat has a normal vector that defines a tangent space and thus a lo-
cal coordinate system for the splat texture. Second, our dataset also
includes optional cliplines that have been pre-computed for splats
with strong depth discontinuities in the laser scanner coordinate
system. Roughly 6% of the splats have such an oriented line in tan-
gent space (cf. 3.2) that clips the otherwise round splat [ZRB*04].
These are used to better represent sharp features as can be seen in
Figure 4.

We use 28 bit to encode normals and cliplines. The first 16 bit
contain octahedron-mapped world-space normals [MSS*10]. The
cliplines are stored as line equation coefficients (ax+ by+ c = 0)
with 4 bit per coefficient. They are normalized w.r.t. our chosen
splat radius r = 2cm.

3.6. Compressed Splat Rendering

Our rendering extends the surface splatting method of [BHZK05]
and consists of four passes (cf. Figure 5):

1. a compute shader for frustum culling of chunks and draw call
generation

2. a visibility pass that fills the depth buffer with splats that are
slightly pushed backwards

3. an attribute pass that accumulates weighted colors and normals
of our textured splats

4. a resolve pass that computes the weighted averages and option-
ally applies relighting

As part of the position compression of Section 3.5, the splats
are already sorted into chunks with known axis-aligned bounding
boxes. The first pass is a compute shader that fills a GPU buffer
with indirect draw commands and is invoked once per chunk. If the
chunk intersects the view frustum, a draw call is generated for 4
vertices (a quad) and 8192 instances (the per-chunk splats). Other-
wise, an empty draw call is created to maintain a 1-to-1 mapping
from chunk index to draw command index. We did not observe a
performance gain from a compaction step. The splats can now be
rendered by a single glMultiDrawArraysIndirect call.

The visibility pass is close to a typical depth pre-pass: only a
depth buffer is bound and all splats are rendered with a fragment
shader that discards fragments outside the spherical splat shape or
outside the clipping plane. The major difference to a normal depth
pre-pass is that all depths are pushed back by a small world-space
margin (2–5 cm in our scenes) to allow blending of splats close
to the surface. In our experiments, applying this margin in the ver-
tex shader is considerably faster than modifying gl_FragDepth,
even when using a conservative depth specification. Figure 6 shows
the effect and importance of the margin.

The attribute pass uses additive blending and writes into a
RGBA16F render target to accumulate weight and weighted splat
color. The weight of a fragment is chosen as 1− d2 for simplic-
ity, where d ∈ [0,1] is the normalized distance to the splat cen-
ter. Since the purpose of this is to prevent popping artifacts rather
than to perform interpolation, a more sophisticated weighting does
not improve the quality. If relighting should be supported, another
RGBA16F target can be used to accumulate normals.

In the resolve pass, a fullscreen post-process divides the accumu-
lated weighted color by the accumulated weight to obtain the output
color. Additionally, the optional relighting and a gamma-correction
is applied.

3.6.1. Splat Shader

Splat-based rendering tends to have significant overdraw. Our
test dataset has 3–5 splats on average that contribute to the fi-
nal pixel. Thus, the fragment shaders have a considerable perfor-
mance impact, and our profiling shows that the rendering is typi-
cally bandwidth-limited, especially for higher resolutions. Due to
the chunk-based culling, the vertex shaders have limited impact on
the runtime and we can decode the per-splat geometry and atom
information in each vertex.

For maximum performance, we split the input point cloud into
batches by the number of atoms needed (0–8 in our tests). Every
subset has their own chunks and a shader that is specialized by the
number of atoms. We start with the per-splat average color, which
is read in the vertex shader and does not require a texture fetch.
Each splat texture consists of a weighted sum of atoms, which are
sampled from the dictionary and added in the fragment shader. In
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(a) culling (b) depth buffer (c) accumulated colors (d) accumulated weight (e) resolved color

Figure 5: Our rendering (extended from [BHZK05]) consists of four passes. First, a compute shader performs culling of splat chunks and

populates a draw call buffer (a). Then, a visibility pass renders slightly pushed back splats to allow accumulation within a small margin (b).

The attribute pass uses additive blending to accumulate weights and weighted colors in two render targets (c,d). Finally, a post-process

resolve pass computes the properly blended output color (e). The stripe pattern in the accumulation targets is an artifact of the input splat

distribution.

Figure 6: Instead of rendering only the front-most splat fragment,

we use the multi-pass rendering of [BHZK05] to average the con-

tribution of all splats within a certain margin. The figure shows an

example without margin (left) and with a 2 cm one (right). The mar-

gin is essential for hiding the underlying splat structure.

contrast to traditional uncompressed rendering, this incurs more
texture fetches but is significantly more cache-friendly for small
dictionaries. In low-contrast areas, where splats are approximated
by uniform color (i.e. 0 atoms), our method does not perform any
texture fetches and can even be faster than the baseline. For large
dictionaries, cache misses slow down rendering significantly. Ta-
ble 3 and Section 4 evaluate this behavior in more detail.

Compared to the method of [BHZK05], we added the com-
pute shader for culling and indirect draw call generation. How-
ever, our main contribution is the direct rendering of compressed
splats, especially the on-the-fly reconstruction of the splat texture
via weighted dictionary atoms.

4. Results and Discussion

We evaluated our method on a dataset of 71 million splats, acquired
by multiple fused laser scans. Additionally, 441 camera images of
size 3680× 2456 were taken and each splat is annotated with the
index of such a camera image. The implementation was performed
in C++ and OpenGL using the Clang 7 compiler. To evaluate the
rendering performance, an NVidia GeForce GTX 1080 with 8GB
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Figure 7: Learning performance for three different dictionaries

with 16 bit, 12 bit and 8 bit indices, respectively. Every dot marks

one finished iteration (sparse coding + k-SVD dictionary update).

The graphs show data for approximately one day and roughly in-

dicate the convergence behavior. Note that the (quality decreasing)

weight quantization is not performed here, but in a later subsequent

single sparse coding step.

VRAM was used. The dictionary learning was performed on a clus-
ter node with two Intel Xeon Gold 6136 CPUs (each with 12 cores
and 24 threads @ 3.0 GHz) and 384 GB RAM.

Timings are given in Figure 7. For the 12 bit and 16 bit dic-
tionaries, quality did not increase much after one day of training.
However, for the 8-bit dictionary, the k-SVD step is extremely slow
(between 3 and 5 hours) due to the high number of input residuals
distributed among the 256 dictionary atoms. Within the following
64 hours, its quality increased by only 0.5dB (not shown in the
plot). For every splat, the sparse coding step was cut-off after a
quality of 40dB (or a maximum number of 8 atoms) was reached
and took between 1 and 1.5 hours for the smaller dictionaries and
up to 2 hours for the 16 bit dictionary.

The baseline renders the splats and, in the fragment shader,
projects the world position into the image space of the annotated
camera image to sample from the appropriate texture. We call this
the “LOD 0” or “original” rendering. Our test dataset is too large
for many graphics cards, and a straightforward compression would
use DXT1 or BPTC or even downsample the input texture. In con-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



K. Schuster, P. Trettner, P. Schmitz, J. Schakib, L. Kobbelt / Compression and Rendering of Textured Point Clouds via Sparse Coding

name splat data (tex) texture data total data bytes / splat τall τtexture quality (PSNR)

LOD 0 (original) 142 MB 15.94 GB 16.56 GB 233.2 1.0 1.0 ∞ dB
LOD 0 BPTC 142 MB 5.31 GB 5.93 GB 83.5 2.8 2.9 45.59 dB
LOD 0 DXT1 142 MB 2.66 GB 3.28 GB 46.2 5.0 5.7 40.04 dB
LOD 1 142 MB 3.99 GB 4.61 GB 64.9 3.6 3.9 38.47 dB
LOD 1 BPTC 142 MB 1.33 GB 1.95 GB 27.5 8.5 10.9 36.55 dB
LOD 1 DXT1 142 MB 0.66 GB 1.29 GB 18.2 12.8 20.1 35.07 dB
ours D8W4 514 MB 1 MB 0.99 GB 14.0 16.7 31.2 38.10 dB
ours D12W4 577 MB 0.02 GB 1.07 GB 15.1 15.5 27.1 39.09 dB
ours D16W8 966 MB 0.27 GB 1.71 GB 24.1 9.7 13.0 41.36 dB
per splat texture 0 MB 290.82 GB 291.30 GB 4102.8

Table 1: Size of the 71 million splat dataset that we use for evaluation. The original texture data is a set of 441 camera images onto which

the splats are projected. Geometry has been quantized (cf. 3.5) and all texture data contains 5 mipmap levels. Our method can be used

with different dictionary sizes and weight quantizations (e.g. D8W4 is an 8 bit dictionary with 4 bit weights). We also compare against

downsampled and block-compressed versions of the original data. As a reference, we also compute the size if each splat had their own

32×32 texture, i.e. the same size as our dictionary atoms. The total amount of data includes the 477 MB geometric data and is additionally

shown in bytes per splat. The compression factor is shown including texture and geometric data (τall) and texture-related data only (τtexture).

Finally, we measure the quality of each compressed dataset as PSNR over all splats.

Figure 8: A learned dictionary with 256 atoms of size 32 × 32
each. For the visualization, pixel values are scaled and mapped

from [−1,1] to [0,1], i.e. grey represents 0. Each splat stores its

average color, thus each atom has zero mean. Splat textures are en-

coded as a weighted sum of a small number of atoms.

trast, our method computes a small dictionary of 32×32 atoms, and
annotates each splat with a variable number of atom indices and
discretized weights. While in the original rendering, many splats
re-use overlapping texture regions, our method reconstructs unique
per-splat textures. As a further comparison, we consider the case
where each splat has a 32×32 texture, e.g. stored in a texture atlas.

Basic statistics and a quality measure of these versions are pre-
sented in Table 1. For the quality, we reconstruct the 32 × 32
texture for every splat and compute the peak signal-to-noise ra-
tio (PSNR) compared to the original (resampled) splat texture. For
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Figure 9: The number of atoms per splat is variable and depends

on the target cutoff quality, which effectively adapts to the local

texture complexity. For different qualities, the distribution of atom

counts are shown (for D16W8, the 16 bit dictionary with 8 bit

weights). Note that splats store their average color explicitly, and

thus might meet the quality target with 0 atoms, e.g. in homoge-

neous regions. To achieve 40 dB quality, more than 80% of the

splats need no more than 8 atoms, while about 40% of the splats

require no atoms.

the evaluated block compression methods, BPTC (BC7) and DXT1
(BC1), encoding was performed through the NVidia driver (version
460.73). Our method offers comparable PSNR at 2–3 times higher
compression factors.

Table 2 shows qualitative results as close-up renderings from the
captured point cloud. Downsampling and block compression can
result in reasonable PSNR, but typically exhibit visible artifacts.
Our approach, especially for small dictionaries, tends to result in a
loss of high frequencies, but otherwise less visible artifacts.

An example of a learned dictionary is shown in Figure 8. It con-
sists of some low-frequency atoms reminiscent of radial gradients
and wavelets and a collection of high-frequency ones. Each splat
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original LOD0 BPTC LOD0 DXT1 LOD1 LOD1 BPTC LOD1 DXT1 ours D12W4 ours D16W8

Table 2: Example close-ups from our dataset, compared with different compression options. The first four rows are representative examples.

The last two rows show two extreme cases: an example where our reconstruction is as good as the original and an example where our method

performs poorly and erases important high-frequency detail. The images are best viewed in the digital version.

references a variable number of atoms, depending on how many
are needed to reach a certain quality target. Figure 9 shows the
distribution of atom counts depending on the target quality. Our
dataset contains some largely homogeneous regions, and as each
splat stores its average color explicitly, a significant amount of
splats actually requires zero atoms.

Finally, we evaluate our render performance on several test views
in Table 3. Each pass of our rendering (cf. Section 3.6) is mea-
sured individually. Culling via compute shader, the visibility pass,
and the resolve pass do not depend on the texture compression.
Only the attribute pass is evaluated for the different compression
versions. The baseline rendering, and its downsampled and block-
compressed versions, use large textures and are highly bandwidth-

limited. In contrast, our method requires more computations and
texture fetches in the fragment shader, but the 12 bit dictionary is
extremely small compared to the original dataset. Additionally, if a
splat can be approximated by a uniform color (0 atoms), no texture
fetch is necessary for rendering it. Thus, our rendering is actually
faster than the baseline versions in some cases. A full 16 bit dic-
tionary consumes 268 MB, which does not fit into any GPU cache.
This slows down our method, as the atom reconstruction is effec-
tively random access into the dictionary. On the other hand, the
small 8 bit dictionary does not increase rendering performance or
memory efficiency significantly compared to the 12 bit dictionary,
but is 1dB worse in quality. A promising avenue for future work
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visible splats 4.19 mio. 3.76 mio. 3.94 mio.
overdraw 7.65 7.09 5.91
tculling 0.14 ms 0.14 ms 0.15 ms
tvisibility 5.12 ms 4.53 ms 4.69 ms
tattribute (LOD 0 BPTC) 7.48 ms 6.04 ms 9.32 ms
tattribute (LOD 0 DXT1) 7.51 ms 6.03 ms 9.28 ms
tattribute (LOD 1) 7.50 ms 6.06 ms 9.38 ms
tattribute (LOD 1 BPTC) 7.39 ms 5.97 ms 9.29 ms
tattribute (LOD 1 DXT1) 7.37 ms 5.97 ms 9.33 ms
tattribute (ours D8W4) 6.67 ms 6.57 ms 5.70 ms
tattribute (ours D12W4) 6.85 ms 6.96 ms 5.77 ms
tattribute (ours D16W8) 13.79 ms 13.75 ms 9.01 ms
tresolve 0.08 ms 0.08 ms 0.08 ms

Table 3: Render statistics and timings of our four passes on an NVidia GTX 1080. The culling, visibility, and resolve passes are mostly

independent of the texture compression. In the attribute pass, the splat fragment shaders have to decompress or reconstruct their textures and

thus depend on the compression used. With small dictionaries, our method is more cache-friendly and can even result in faster rendering than

the baseline. However, large dictionaries incur many cache misses and slow down rendering. Note that we did not evaluate the uncompressed

LOD 0, as the texture data did not fit into GPU memory.

is to reorder the atoms in the dictionary to minimize cache misses
within a single splat.

In summary, our method offers a 2–3 times higher compression
factor over traditional block-compression methods at comparable
quality. While our compression is mainly free of traditional arti-
facts like visible blocks, aliasing, or color degradation, we instead
tend to smooth over noise and high frequencies and non-repeating
sharp features (that are not captured in any dictionary atom). When
the dictionary is small and atom counts are low, our method can
actually be faster than the uncompressed or block-compressed ver-
sions due to lower bandwidth utilization. However, large dictionar-
ies suffer from many cache misses and thus degrade performance.

As was described before, T0, the maximum number of atoms per
splat, can be chosen freely to trade memory efficiency and render-
ing performance against reconstruction quality. Independent of the
effective number of atoms that were determined during coding, the
atom count can be limited dynamically at runtime to reduce the
number of texture fetches. For the presented results and timings,
we always used all available atoms.

5. Limitations and Future Work

In this paper, we focus on uniform geometry and texture density:
splats at LOD 0 have a uniform fixed world-space size and a fixed
texture resolution. One possible extension of our method would be
to relax these requirements and encode splat size and shape in a
few bits to support varying splat sizes, elliptical splats, and different
texture densities. This would also require minor adjustments to the
k-SVD for using different per-splat weight masks.

We currently rely on a rather straightforward quantization for

the geometric splat attributes. A promising avenue for future work
would be to use a sparse voxel octree or DAG for these. While this
would decrease the decoding performance, it can still be used for
real-time rendering and might save up to 50% memory.

Another issue is that high-frequency details tend to get smoothed
by our approach. This is a result of minimizing the pixel-wise
squared error, the size of the dictionaries and the way they are
optimized. There are different avenues to explore to improve the
quality in this regard. First, MSE (and thus PSNR) is a suboptimal
metric to measure texture quality. A more perception-oriented error
metric will most likely improve the perceived reconstruction qual-
ity but might be challenging to optimize dictionaries for. Second,
splats can be slightly rotated or moved in tangent direction without
changing the represented geometry. This degree of freedom could
be used to better align texture content and thus improve visual qual-
ity while keeping the dictionary size fixed. Furthermore, the dic-
tionary learning could be improved to make more effective use of
the available atom count. Several heuristics proposed by [AEB06]
could be investigated, such as purging atoms that are rarely used or
too similar. The computationally more expensive FOCUSS algo-
rithm could be evaluated [GR97], alongside a more recent variant
that significantly improves its efficiency [HCZX08].

Finally, performance can always be optimized further. Our pre-
processing step, the dictionary learning, is quite slow and typically
needs hours for our dataset of 71 million splats. We already de-
scribed several optimizations at the end of Section 3.3, but there
is certainly room for improvement. On the rendering side, we are
currently strongly bandwidth-limited due to overdraw. Some of the
overdraw is inherent to the blended splat rendering, but proper oc-
clusion culling, e.g. via a hierarchical z-buffer, would be beneficial.
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While our method focuses on LOD 0, where memory constraints
are the most critical, it is also applicable to higher LODs: after sub-
sampling or clustering the splats, their textures can simply be added
to our compression described in Section 3.3.

In this paper, we evaluated our method on just a single 3D scan
dataset. While it is very diverse in appearance, the effectiveness of
our approach needs to be validated on different inputs. It would also
be worthwile to compare the achievable compression ratios when
performing sparse coding based on generic dictionaries, such as the
learned activations of the first layers of a neural network.

6. Conclusion

We presented a compression technique for textured point clouds
that allows for efficient rendering without prior decompression.
This is an important problem, as real-world captured data tends
to require immense space that often exceeds GPU memory. Our
method compresses geometry and texture and is able to directly
render the compressed data.

We compress splat texture data using dictionary learning via k-
SVD to create a sparse representation. For each splat, this yields an
average color, and a variable-sized list of atom indices and weights.
The weighted sum of these is an approximation of the original tex-
ture. The computed dictionaries exploit the self-similarity in the
texture data.

In contrast to a general-purpose blackbox compression, we re-
tain random-access into the texture data and thus enable efficient
rendering. As the rendering is done via splat blending, and the dic-
tionary atoms are in full resolution and bit-depth, our method does
not suffer from many typical compression artifacts.

We have shown the viability of dictionary-based compression
for textured splat rendering. Our approach reduces the memory re-
quirements of textured point cloud datasets by one order of magni-
tude, while retaining the possibility to efficiently render the com-
pressed data.
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