
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Simpler Quad Layouts using Relaxed Singularities

M. Lyon1 , M. Campen2 , and L. Kobbelt1

1RWTH Aachen University, Germany
2Osnabrück University, Germany

Figure 1: Quad layouts on surfaces are commonly generated with a two-step strategy: first determine a plausible configuration of exceptional
(irregular) layout vertices, then determine a suitable connectivity pattern. Left: Low layout quality due to suboptimal choices in the first step.
Right: We consider the result of the first step a suggestion rather than a hard constraint, enabling the controlled relaxation (movement and
merging) of the irregular vertex configuration as part of a novel connectivity determination step, yielding simpler layouts of high quality.

Abstract

A common approach to automatic quad layout generation on surfaces is to, in a first stage, decide on the positioning of irregular
layout vertices, followed by finding sensible layout edges connecting these vertices and partitioning the surface into quadrilat-
eral patches in a second stage. While this two-step approach reduces the problem’s complexity, this separation also limits the
result quality. In the worst case, the set of layout vertices fixed in the first stage without consideration of the second may not
even permit a valid quad layout. We propose an algorithm for the creation of quad layouts in which the initial layout vertices
can be adjusted in the second stage. Whenever beneficial for layout quality or even validity, these vertices may be moved within
a prescribed radius or even be removed. Our algorithm is based on a robust quantization strategy, turning a continuous T-mesh
structure into a discrete layout. We show the effectiveness of our algorithm on a variety of inputs.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models; Mesh geometry models; Shape modeling;

1. Introduction

In a variety of industries from animation to engineering, quad
meshes are the mesh representation of choice for a broad spectrum
of tasks [BLP∗13]. Ideally, the quad meshes do not only have indi-
vidual elements of high quality (such as near-right angles) but the
quad mesh as a whole has a high quality global structure in terms
of patch layout and edge flow.

Algorithmically, the task of generating a quad layout for a given
triangle mesh is often separated into two steps [Cam17, §6]. The

first step decides on the number, positions, and valencies of the
layout vertices. The second step is tasked with connecting these
layout vertices by layout edges, so called separatrices, and usually
has to find a trade-off between separatrices that are well-aligned
with intended directions (given, e.g., as a guiding field) and separa-
trices that are short and form a simple layout with a small number
of large patches.

Splitting the layout generation problem into two steps reduces
complexity, but it also comes with a disadvantage. Since the first

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-0931-9718
https://orcid.org/0000-0003-2340-3462
https://orcid.org/0000-0002-7880-9470

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

step places layout vertices without considering their future inter-
connectedness, they are unlikely to be in ideal positions with re-
gard to that goal. Not being able to change these vertices, the sec-
ond step is bound to produce suboptimal results – either because
layout edges are less aligned than they could be, or because short
connections are avoided due to being deemed too badly aligned. In
the worst case it may not even be possible to generate any valid
layout with the given layout vertices due to topological restric-
tions [MPZ14].

Therefore, we propose an algorithm for the generation of simple
quad layouts with a relaxed setting in the second step. Concretely,
we enable the layout vertices generated in the first step to be moved
as well as merged over short distances – whenever this is beneficial
to the objective of alignment and simplicity. Our algorithm offers
two simple parameters, α and r. The former controls the amount of
acceptable deviation of the layout edges from the intended direc-
tions, the latter controls the amount of acceptable movement of the
layout vertices proposed by the first step.

This relaxed view on the layout vertex configuration opens op-
portunities to generate better layouts in two ways. For one, vertices
may be moved into the acceptable directional deviation range spec-
ified by α, enabling shorter layout edges. Secondly, vertices may be
merged, possibly even leading to cancellation, i.e., the formation of
regular vertices instead.

Similar to [CBK15, LCK21], our layout construction algorithm
is based on the technique of quantizing a T-mesh, turning an (easy-
to-construct) non-conforming rectangular partitioning of the input
surface into a conforming partition (without T-junctions). We setup
linear constraints that ensure high layout quality and solve an inte-
ger linear program to find a quantization that adheres to these con-
straints globally. The T-mesh can be generated using existing meth-
ods, e.g., by tracing a motorcycle graph in a seamless parametriza-
tion or, more directly, in a cross field.

2. Related Work

Quad Layouts Quad layout generation algorithms can be grouped
into two categories, methods that rely on the simplification of an
initially complex layout and methods that compute layouts for a
given surface "from scratch".

Bommes et al. [BLK11] take as input quad meshes and it-
eratively remove certain helical structures. Similarly, Tarini et
al. [TPP∗11] use iterative improvements but modify the quad lay-
out more directly by reconnecting individual layout edges. Viertel
et al. [VOS19] improve non-conforming layouts by collapsing quad
strips in order to reduce the number of patches and T-junctions in
the layout. Such iterative methods have in common that layout ad-
justments are typically applied in a greedy fashion meaning they
may get stuck in non-optimal local minima.

A number of algorithms have been proposed for the simplifica-
tion of quad meshes rather than quad layouts [DSSC08, DSC09,
TPC∗10, PZKW11]. Conceptually, these are also applicable to
quad layouts which could simply be considered very coarse quad
meshes. However, these methods only optimize for coarseness and
do not consider any other layout quality aspect such as its alignment
to prescribed directions.

Razafindrazaka et al. [RRP15] generate layout edges for a given
set of layout vertices by first finding a large set of candidates by
tracing within a seamless parametrization and then selecting a con-
sistent subset by solving a binary program. Pietroni et al. [PPM∗16]
propose a similar algorithm, but find candidates directly in a cross
field. Their formulation is not always able to find a valid connection
for every layout vertex which leads to T-junctions in the final lay-
out and may require the insertion of additional singularities. Instead
of explicitly enumerating candidates, Lyon et al. [LCK21] encode
possible separatrices via a T-mesh that has been traced in a seam-
less parametrization. A quad layout is found by solving an integer
linear program to find a coarse quantization of the T-mesh while
taking care not to generate separatrices that exceed a user provided
directional deviation bound. In contrast to our method, these three
methods generate layouts that contain (at least) all input singulari-
ties which limits the achievable layout simplicity.

Input Complexity Reduction Since layout generation algorithms
are often tasked with connecting layout vertices given as input, one
way of producing less complex layouts is generating fewer lay-
out vertices in the first place. Commonly, the layout vertices stem
from a cross field [VCD∗16] which not only defines the layout ver-
tices via its singularities, but also specifies the desired layout edge
alignment over the surface. Automatic methods for the generation
of such cross fields [BZK09, KCPS13, DVPSH14] commonly use
a field smoothness objective, essentially promoting the geodesic
straightness of the field’s integral curves. The number and posi-
tions of singularities that arise is mainly mandated by the surface’s
Gaussian curvature distribution. Ray et al. [RVAL09] describe an
approach based on the smoothing of the Gaussian curvature field
beforehand, leading to a smaller number of singularities. In a dif-
ferent approach, Ebke et al. [ECBK14] compute cross fields based
on a smoothed normal field. Subsequently, the crosses are projected
back onto the original surface, which, unfortunately, may flip the
cross. Surface parametrizations that adhere to these directions will
contain flipped or degenerate triangles which is problematic for
quad mesh [CBK15, LCBK19] and quad layout generation algo-
rithms [RP17, LCK21] that require flip free parametrizations as in-
put.

Motorcycle Graph Tracing In the context of quad meshing, mo-
torcycle graphs [EGKT08] are used to create rectangular partitions
of surfaces. In the simplest case such a partition is created by dis-
cretely following edges of a given quad mesh [RP17]. Here, tracing
is trivial as one just needs to follow the edges of the quad mesh and
intersections between traces are easily identifiable. However, suit-
able quad meshes are relatively difficult to obtain.

Alternatively, motorcycles can be traced in a seamless
parametrization [CBK15, LCK21] which is still relatively straight
forward if care has been taken to properly sanitize the parametriza-
tion [MC19].

Finally, tracing motorcycles within a cross field is attractive as
the input is relatively easy to obtain. However, tracing then requires
the most sophisticated algorithms [BJB∗11, MPZ14, RS14] as well
as additional considerations when working with the resulting graph
in the downstream application (cf. Section 4.4).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

3. Quad Layout via T-mesh Quantization

In our algorithm we adopt the setting of Lyon et al. [LCK21] and
construct a quad layout via the quantization of a T-mesh, i.e., the
constrained assignment of non-negative integer values to elements
of a non-conforming surface partition in a globally consistent man-
ner. In this section we concisely recap this setting and discuss how
the quantization affects the final quad layout. For an in-depth ex-
planation of the background we refer to the above paper.

3.1. T-mesh

A T-mesh T = (N ,A,P) consists of nodes N, arcs A, and
patches P. In our context, T-meshes are, for instance, gener-
ated by tracing a so called motorcycle graph, either in a cross
field [RS14, MPZ14] or in a seamless parametrization [CBK15,
LCBK19,LCK21]. Conceptually, particles (called motorcycles) are
spawned from every singularity (of the field or the parametriza-
tion) into all field or isoline directions; they stop when they inter-
sect the trace of another motorcycle (or their own). When the last
motorcycle stops, the union of traces form a T-mesh whose nodes
consist of the singularities and intersection points, and whose arcs
are formed by the trace segments between nodes. In the case of
tracing in a cross field, small additional measures can be neces-
sary to ensure unconditional termination [MPZ14]. It can be shown
that all patches (bounded by T-mesh arcs) are logically rectangu-
lar [EGKT08].

In slight deviation from this, we adopt the setting of Lyon et
al. [LCK21]: motorcycles do not stop at the first intersection, but
continue through further intersections until a certain condition is
met (cf. Section 3.3). This yields an extended motorcycle graph,
containing more intersection nodes, exploited in the following to
set up quantization constraints targeting layout quality. In Figure 6b
we show one such T-mesh. Note that while the T-mesh is depicted
on the surface in 3D, the only relevant information required for our
method is its topology as well as a length li for every arc ai ∈ A.
If the T-mesh is traced in a parametrization, li is simply the length
of the arc in the parametric domain. For a T-mesh traced in a (pos-
sibly non-uniform) cross field, specified by vectors v1,v2 per face,
the length li is measured piecewise w.r.t. the local per-face coordi-
nate systems formed by the cross field vectors, i.e., using the metric
tensor v1vT

1 + v2vT
2 .

At each intersection point the two intersecting traces sug-
gest a candidate separatrix connecting the two singularities that
spawned the traces. Geometrically, this separatrix can be depicted
as the hypotenuse of a right triangle formed by the two traces.
To make this precise: Traces ti and t j starting in singularities i
and j intersect in node ni j . With Si j ⊂ A we denote the set of
arcs between i and ni j . With the combined
length li j of arcs Si j , the angular deviation
αi j between trace ti and the potential separa-
trix connecting i and j, can be computed as
tanαi j = l ji/li j . Note that this angle is only an
estimate of the actual pointwise angular devia-
tion in case the T-mesh was traced in a locally non-integrable cross
field. For the smooth cross fields commonly used in practice, how-
ever, this can be expected not to be an issue of relevance.

Figure 2: Effect of different quantizations for T-mesh in (a). If both
a and b are set to 1, the two inner singularities are not connected
(b). If b (or a) is set to 0, the corresponding arcs can be collapsed
and the two singularities are connected by a separatrix that devi-
ates α from the original trace directions (c). If a and b are both set
to 0, the singularities are merged forming a regular inner vertex (d).

3.2. Quantization

A quantization is an assignment of non-negative integer lengths to
the arcs of a T-mesh T . We denote with qi ∈Z≥0 the quantization
of arc ai ∈ A and use qi j := ∑ak∈Si j

qk for the total quantization
of the arcs in Si j. A quantization is consistent if the patches of T
remain rectangular, i.e., if the total quantization of the arcs on op-
posite sides of the patches is equal.

The purpose of these assigned integer values is to define how
the non-conforming T-mesh shall be turned into a conforming quad
layout (without T-joints), see Figure 2 for an illustration. Effec-
tively, the quantization specifies (A) how arcs are to be concep-
tually extended across T-joints, eventually connecting them with
opposite arcs in a regular manner, and (B) which arcs may be and
are to be collapsed (qi = 0) to yield a simple layout. In particular,
it also determines which separatrices are formed, i.e., which of the
above mentioned candidate separatrices actually materialize: If all
arcs forming one leg (Si j or S ji) of the right triangle are quantized
to 0, singularities i and j end up on the same layout edge or edge
sequence, as in the b = 0 case in Figure 2(c).

3.3. Integer Linear Program

The following constraints have been employed to restrict to quan-
tizations that actually yield valid and desirable layouts:

1. Consistency constraints: For a patch of T , the total quantization
of the arcs on opposite sides of the patch is required to be equal.
This ensures that the patch remains rectangular [CBK15].

2. Separation constraints: Given two traces ti and t j that intersect
at ni j with distances li j > l ji, requiring qi j ≥ 1 prevents singular-
ities i, j from being forced to collapse into each other [LCK21].

3. Layout constraints: If in addition αi j exceeds a given direction
deviation bound, also q ji ≥ 1 is required, preventing the separa-
trix from i to j from materializing [LCK21].

As an example, separation constraints prevent Figure 2(d), leav-
ing (b) and (c) as options. Layout constraints may further rule out
(c), leaving only option (b).

Given a T-mesh (cf. Section 3.1) the above constraints are con-
structed for every patch and every intersection node ni j. The pur-
pose of using the extended motorcycle graph, as mentioned above,
is to have the intersection ni j explicitly present in the T-mesh for
each pair i, j of singularities whose separatrix connection shall po-
tentially be prevented by a layout constraint.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

A quantization can then be computed by means of an integer lin-
ear program (ILP) whose variables are the arc quantization values
qi. To yield a simple layout, the employed objective is the mini-
mization of the sum of all qi, possibly weighted [LCK21]:

E = ∑
ai∈A

l⊥i ·qi, (1)

where l⊥i denotes half the length of the patches incident to arc ai.

4. Relaxed Quantization

For the purpose of generating simpler quad layouts we propose a
relaxed formulation for the quantization of a T-mesh. It differs from
the above in three key ways:

• The positions of the given irregular layout vertices are not con-
sidered to be fixed. Instead, we enable them to move by some
distance in case this is of benefit for the layout’s connectivity.
• We enable nearby irregular vertices to merge in case this is of

benefit. This includes the possibility of mutual cancellation of
two or more irregular vertices.
• We generalize the formulation to support T-meshes traced di-

rectly in a cross field rather than a seamless parametrization.

The latter point is non-trivial because the existence of limit cy-
cles in this more general setting may imply infeasibility of the
above consistency constraints [MPZ14]. Our relaxed formulation
gracefully handles such cases, effectively by adjusting the input
irregular vertices as necessary to facilitate a valid layout. In con-
trast to other methods which insert additional singularities in such
cases [MPZ14,PPM∗16] our method rather simplifies the layout by
merging existing singularities.

Parameters. Our algorithm is controlled via two parameters:

• Angular parameter α controls the acceptable amount of deviation
of the layout separatrices from the intended directions, as given
by a cross field or parametrization isolines.
• Distance parameter r controls the acceptable amount of move-

ment of irregular layout vertices from their original position.

Both are soft parameters in our method, i.e., they do not define hard
bounds, but still enable the overall trade-off of priorities (cf. Sec-
tion 6). This is a sensible approach, given that it is common to
follow up with a final global geometric optimization of the re-
sulting quad layout’s or quad mesh’s embedding in the surface
[LCBK19, CK14, TPP∗11], which will adjust positions and align-
ment wherever beneficial for global quality objectives, cf. Figure 3.

Relaxed Constraints. We employ an integer linear program to
compute a quantization, but use a different set of constraints than
previous work. Given a T-mesh (cf. Section 3.1), we set up relaxed
separation constraints; they prevent collapses of pairs of layout
vertices only if they are out of reach, considering their allowed
movement by r (Section 4.1). Additional index constraints are re-
quired on top, because for reasons of topological validity, depend-
ing on their degrees of irregularity, not all pairs (or larger sets) of
irregular vertices form groups that may be merged (Section 4.2).
Using relaxed layout constraints, we prevent badly aligned sepa-
ratrices (controlled by parameter α), again taking the vertices’ al-
lowed movement by distance r into account (Section 4.3). Finally,

(a) (b) (c) (d) (e)

Figure 3: Badly aligned singularities (a) may lead to more complex
layout connectivity to avoid distorted elements (b). A simple post-
process moves vertices to improve element quality (c). Our algo-
rithm anticipates small movements and allows short, badly aligned
layout edges (d) whose alignment is improved during the smoothing
post-process (e).

a modification of the above constraints addresses the problem of in-
feasibility due to limit cycles, which may be present if the T-mesh
was traced in a generic cross field rather than a parametrization
(Section 4.4).

The generation of quad meshes, exhibiting the desired layout
structure, from the quantized T-mesh is explained in Section 5.

4.1. Relaxed Separation Constraints

Similar to [LCK21] we want to keep irregular layout vertices sep-
arate – unless their distance is smaller than 2r, because for pairs
of layout vertices closer than 2r we intend that they may move to-
wards each other, each by r, and may be merged if beneficial. Thus,
the separation constraints are only added for a pair of singularities
i, j with a trace intersection ni j if their distance exceeds 2r. The
separation is enforced in the direction of larger distance.

qi j ≥ 1 if li j > l ji and li j > 2r (2)

Note that this means that the movement (limited by r) is effec-
tively measured in the L∞-norm with respect to the cross field or
the seamless parametrization that the T-mesh is aligned to. In other
words, r controls how far a singularity may move per (paramet-
ric or field) direction. This simplifies the condition under which the
above constraints are added, relative to the use of the L2-norm. Note
also that by measuring the distance with respect to the cross field or
seamless parametrization it naturally adapts to situations where the
field or parametrization employs local (anisotropic) sizing to better
capture the surface geometry.

4.2. Index Constraints

Each irregular layout vertex has a prescribed valence. When these
vertices are derived from the singularities of a cross field, this va-
lence vi of a layout vertex i is related to the corresponding singu-
larity’s index Ii [RVLL08] by vi = 4(1− Ii). When merging a set of
singularities, the resulting singularity will have an index that is the
sum of the individual indices. Analogously, merging a set of irreg-
ular layout vertices {k}, the resulting vertex i will have a valence

vi = 4−∑
k
(4− vk).

As layout vertex valences below or above a certain threshold may
be undesirable or even unacceptable depending on the target use
case, with the goal of preventing them we add index constraints.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

Figure 4: Left: with fixed vertices some separatrices cannot be used
in the layout due to exceeding the maximum deviation. Right: if ver-
tices can move by r in each direction the deviation may be reduced
into the acceptable range.

Let Ni be the set of layout vertices reachable from vertex i with
a distance of at most 2r. For every such neighboring vertex j ∈ Ni
we add a binary indicator variable ci j ∈B that will take the value 1
if vertices i and j collapse. This is achieved as follows: Let Pi j ⊂A
be the shortest arc path from i to j. If all arcs ak ∈ Pi j are quantized
to zero, vertices i and j collapse onto each other. We therefore set
up the following linear constraint that ensures the indicator ci j is 1
if and only if the complete path Pi j is quantized to zero:

1− ∑
a j∈Pi j

q j ≤ Qci j ≤ Q− ∑
a j∈Pi j

q j (3)

where Q is a large number. The actual value of Q is not important as
long as it is ensured that the right term never becomes negative. Due
to the objective in Equation (1), quantization values q j tend to be
0 unless otherwise constrained. Separation and layout constraints
will only enforce values of 1. Consistency constraints, however,
may enforce larger values if the quantization of a single arc needs to
be equal to the sum of quantizations of multiple arcs on the opposite
side of a patch. Thus, a single q j is bounded by the number of arcs
|A| and we can conservatively set Q = |A| ·maxi, j∈N (|Pi j|).

The resulting index I∗i of vertex i can then be estimated as

I∗i = Ii + ∑
j∈Ni

ci jI j (4)

and constrained to be within the user specified desirable range
[Imin, Imax] with two simple linear constraints:

Imin ≤ I∗i ≤ Imax. (5)

Note that it is conceptually possible for two vertices to collapse not
along the shortest arc-path Pi j but another one – which would be
overlooked by the above indicator construction. Due to the effect
of the consistency constraints (Section 3.3), however, this is only
possible for non-shortest paths in a different path homotopy class
(i.e., winding around handles or further singularities). This could
be covered by the addition of further constraints, along shortest arc
paths per homotopy class up to the movement distance limit. In our
experiments we have not encountered a case where this would have
been relevant though.

4.3. Relaxed Layout Constraints

Layout constraints ensure that the resulting quantization does not
induce separatrices that deviate too much, i.e., more than α, from
their intended direction. With a strict preservation of input vertex
positions (r = 0), this means that for a pair of vertices i, j with
intersection ni j with li j > l ji (which are already separated in one

direction due to separation constraints, cf. Section 4.1) additional
separation in the orthogonal direction is to be enforced via a con-
straint q ji ≥ 1 if l ji/li j > tanα. This way layout vertices i and j
cannot end up on the same line in the parametric domain defined
by the quantization, hence no separatrix is formed.

If layout vertex positions are assumed to be flexible within a dis-
tance of r, the directional deviation of a potential separatrix be-
tween two vertices can be reduced. Figure 4 illustrates the maxi-
mum reduction that can be achieved, by conceptually moving both
vertices in an opposite manner in both parametric directions. This
reduces the length of one leg of the right triangle by 2r while in-
creasing the other by the same amount. This leads to the addition
of a layout constraint under an accordingly relaxed condition:

q ji ≥ 1 if
l ji−2r
li j +2r

> tanα. (6)

4.4. Infeasibility

Due to the fact that cross fields are typically not integrable they may
contain limit cycles. Tracing a motorcycle graph in such a cross
field may thus lead to T-meshes containing arcs for which no posi-
tive length can be assigned without violating consistency [MPZ14].
Two examples where this happens are shown in Figure 5. In the
sea shell model on the left the two arcs marked with q1 must be
quantized to zero because for the inner most patch to be rectangu-
lar it must hold that q1 + q2 = q2 which can only be fulfilled with
q1 = 0. A similar problem occurs in the cube model on the right,
with a valence 3-5 pair of singularities on one of its sides and a
partially specified fixed layout along the 12 cube edges. Due to the
singularities at least one of the sides of the top face needs to have a

Figure 5: Two examples of input singularities that do not permit a
valid quad mesh. Top, an annulus with a valence 2 and a valence
4 singularity on its border. Bottom, a cube with partially fixed lay-
out along the 12 edges and a valence 3-5 pair on one of its sides.
In both cases our formulation merges singularities as necessary,
turning them into regular vertices.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

(a) (b) (c) (d) (e) (f)

Figure 6: Overview of our pipeline. (a) Cross field. (b) Traced T-mesh. Arcs marked in red are quantized to zero and will be collapsed. (c) Col-
lapsed T-mesh. (d) Initial patch-wise parametrization. (e) Quad mesh extracted from optimized parametrization. Note how the parametriza-
tion optimization cannot relocate singularities. (f) Geometric relaxation moves singularities to better locations.

different quantization value (thus number of quads) than its oppo-
site side. This, however, is not possible because all other faces of
the cube need to have equal numbers of quads on opposing sides.

The presence of such arcs which must be quantized to zero can
make our constraints infeasible if two layout vertices exist that are
connected via arcs which are all forced to be zero by consistency
constraints, yet the vertices lie so far apart that they are forced to
be separated by separation constraints.

To enable the handling of such cases – which may only occur if
the T-mesh stems from a generic cross field rather than a seamless
parametrization – instead of using the hard constraints discussed in
the previous sections we can effectively soften them by modifying
separation and layout constraints of the form qi j ≥ 1 to

qi j +hi j ≥ 1, (7)

where hi j is a binary slack variable which is heavily penalized. This
enables the merging even of vertices that are more distant than 2r,
but only if this is inevitable. To this end we choose the penalty so
high that increasing any value hi j above 0 is as costly as setting all
values qi to 1 in Equation (1).

Similarly, Equation (5) can be implemented in a soft way:

Imin−hi ≤ I∗i ≤ Imax +hi (8)

where hi again is a highly penalized integer variable.

Finally, we augment the objective in Equation (1) with the
penalty terms:

E = ∑
ai∈A

l⊥i ·qi +
(
∑hi +∑hi j

)
· ∑

ai∈A
l⊥i (9)

Note that if a pair of singularities exists that cannot be separated
even though it should be, there are two ways of dealing with the
issue. Additional irregular vertices can be inserted so as to enable
the separation [MPZ14]. This increases the layout’s complexity. We
are interested in simple layouts and with the above strategy we al-
low the merging of vertices even though this requires a singularity
movement larger than desired. For the two examples in Figure 5 our
algorithm simplifies the layout by removing singularities. Which of
the two strategies is beneficial ultimately is a question of the spe-
cific application scenario.

4.5. Relaxed Integer Linear Program

In summary, we find a quantization by solving the following ILP:

minimize Energy (9)
subject to (2)∗, (3), (6)∗, (8) (10)

where Equations (2) and (6) are implemented in a soft manner ac-
cording to Equation (7).

As in [LCK21], not every single arc needs its own quantization
variable; they can be shared within sets of arcs that trivially need
to have identical quantization values due to being solitary arcs on
opposite sides of simple patches. Also the number of (relaxed) sep-
aration and layout constraints can be reduced since many of the sets
of arcs required to be quantized to≥ 1 are supersets of another one
and therefore are implied. Hence, the number of quantization vari-
ables, separation and layout constraints are bounded by the number
of traces, rather than the number of arcs or patches, which depends
on the number of input singularities but is independent of the choice
of α and r [LCK21].

The possibility to collapse layout vertices increases the complex-
ity of the integer linear program. While there are only two index
constraints (Equation (8)) per layout vertex, the required collapse
indicator variables ci j and corresponding constraints (Equation (3))
depend on r: for each layout vertex i one indicator variable and two
constraints are added for each other layout vertex j which i may
collapse into, i.e., with li j ≤ 2r (cf. Equation (6)). In the worst case,
for extreme r, every vertex can collapse into any other one. In this
case the number of additional variables and constraints would be
quadratic in the number of layout vertices.

5. Quad Mesh Extraction

Lyon et al. [LCBK19] propose a robust algorithm for the quad
mesh generation, using Tutte-embeddings of the T-mesh’s indi-
vidual patches. This initial parametrization can then be optimized
globally while taking care not to introduce any invalid elements
[RPPSH17]. This strategy works well due to the theoretical guar-
antees of the Tutte-embedding. However, for the Tutte-embedding
itself to yield valid results the prescribed boundary needs to be non-
degenerate. Therefore, patches that are quantized to zero area are
removed by iteratively collapsing arcs [MPZ14, LCBK19].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

Our method builds on the observation that, in contrast to pre-
vious methods that use a quantized T-mesh to prescribe positional
constraints on all original singularities, with this collapse based ap-
proach strict singularity separation is not technically required. As
Figure 2 illustrates, singularities can be collapsed onto each other
in the T-mesh, forming a single node. We can therefore use the
zero-arc collapse algorithm as suggested in [LCBK19] with one
added rule: when an arc is collapsed we always collapse towards
the singularity if one is present. This way, singularities remain on
their original position unless two or more are merged in which case
the collapse may be performed in either direction. Note that when
merging two singularities the position of the remaining T-mesh
node is not important since the collapse distance is small (below
2r) and the final positions will be determined by a geometric opti-
mization step in the end.

To globally improve the initial patch-wise Tutte-embedding we
optimize the alignment-promoting energy proposed in [BZK09],
for which we compute a new cross field that fits the new singularity
configuration. We use [EBCK13] to extract a quad mesh from the
resulting parametrization.

Note that so far all singularities, apart from those that were
merged, still remained on their original position as the parametriza-
tion optimization is unable to move them. This means that some
separatrices may have relatively bad alignment as the movement of
up to r assumed during solving of the integer linear program has
not occurred yet. Thus, as a final step, we optimize the layout em-
bedding to move singularities to better locations on the surface. For
this purpose it would be ideal to use an algorithm which is explicitly
designed to optimize layout embeddings such as [CK14], however,
we found that in practice also a simple Laplacian smoothing of the
quad mesh, with vertices constrained to remain on the input sur-
face, works well. Our complete pipeline is summarized in Figure 6.

6. Results

As input for our method we created cross fields and seamless
parametrizations with [BZK09] using a target edge length of 1%
of the bounding box diagonal. We use Gurobi [GO21] to solve our
integer linear program.

We show the results of our method on a variety of inputs in Fig-
ure 7 and sumarize the statistical data in Table 1. We used param-

Model #Faces #Sin #Sout #P MSJavg time
ARMADILLO 43160 185 145 391 0.96 2.4 s
WRENCH 50000 24 16 20 0.98 0.12 s
DANCER 18292 88 49 226 0.94 1.0 s
LION 100002 274 240 805 0.97 10.8 s
DANCER2 49996 82 62 207 0.97 0.5 s
SANTA 151558 80 74 228 0.98 0.8 s
ROLLSTAGE 100000 50 48 77 0.99 0.3 s
ELEPHANT 49918 132 97 246 0.98 1.7 s

Table 1: Statistical data for our results. From left to right: Model
name, number of triangles, singularities in the input and output,
number of patches in the resulting layout, average minimum scaled
Jacobian of quads, time to compute quantization.

Figure 7: Our method’s result layouts and meshes on various mod-
els with cross field derived input singularities.

Figure 8: Left: input cross field. Inset shows noisy singularities be-
hind the ear. Middle: keeping all singularities leads to dense layout.
Right: allowing singularities to move small distances and merge
with others yields a simpler layout.

eters α = 15◦, r = 2.0, Imin = −4 (valence 8), and Imin = 1 (va-
lence 3) by default if not stated otherwise.

Figure 8 shows the benefit of singularity merges. When singular-
ities are not allowed to move they are reproduced in the final layout
which is necessarily relatively dense. Allowing nearby singularities
to collapse removes many pairs of valence 3-5 singularities, espe-
cially those behind the ear created by noise, but also on the trunk
or around the eye region, leading to a much simpler layout.

In Figure 9 we show the effect of the two parameters that control

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

α = 5◦

r = 0
#P = 9999
#S = 132

MSJ = 0.989

α = 5◦

r = 2
#P = 1134
#S = 106

MSJ = 0.989

α = 5◦

r = 4
#P = 575
#S = 96

MSJ = 0.990

α = 15◦

r = 0
#P = 2140
#S = 132

MSJ = 0.982

α = 15◦

r = 2
#P = 492
#S = 106

MSJ = 0.984

α = 15◦

r = 4
#P = 286
#S = 95

MSJ = 0.985

α = 25◦

r = 0
#P = 1314
#S = 132

MSJ = 0.978

α = 25◦

r = 2
#P = 294
#S = 104

MSJ = 0.983

α = 25◦

r = 4
#P = 260
#S = 98

MSJ = 0.984

α = 35◦

r = 0
#P = 768
#S = 132

MSJ = 0.977

α = 35◦

r = 2
#P = 256
#S = 106

MSJ = 0.980

α = 35◦

r = 4
#P = 219
#S = 96

MSJ = 0.980

Figure 9: Effect of the parameters on the layout. From left to right
r is 0, 2, and 4; from top to bottom α is 5◦, 15◦, 25◦ and 35◦.

Figure 10: For the models in Figure 7 we show how increasing r
influences the number of indicator constraints (Equation (3), used
for the index constraints) and time for solving the ILP.

our algorithm. We vary α, the parameter that controls the maximal
separatrix deviation, between 5◦ and 35◦, and r between 0 and 4.
Increasing either parameter produces coarser layouts. Note that in-
creasing r allows to simplify the layout in two ways: the relaxed
constraints (Equation (6)) permit separatrices which would be out-
side the angular bound otherwise, and by merging nearby singulari-
ties fewer vertices necessarily remain in the layout, requiring fewer
separatrices and leading to layouts with fewer patches.

To evaluate the effect of r on the number of layout vertices an-
other layout vertex i can collapse into, and thus on the number of
constraints and the run-time of the solver, we compute quantiza-
tions for the models in Figure 7 for varying r. The graphs in Fig-
ure 10 show that an increased number of constraints generally lead
to a longer run-time. The exact correlation is hard to predict as the
used general purpose solver package employs a variety of opaque
heuristics and strategies to solve the NP-hard problem.

6.1. Comparison

We compare our method with the methods of Pietroni et
al. [PPM∗16] and Lyon et al. [LCK21] on models also used in
these works and show the results in Figures 11 and 12. For the
models from [PPM∗16] (Figure 11 (top) and Figure 12) we use the
frame-fields provided by the authors as input to our method. For the
others we generate cross fields using [BZK09]. For [PPM∗16] we
compare to their published results, for [LCK21] we generate results
using our method with the setting r = 0.

Pietroni et al. produce quad layouts by searching separatrix can-
didates in a cross field and solving a binary program to select a
subset which forms the final layout. Their method may choose to
not connect some of the layout vertices leading to separatrices that
end in T-junctions. While this is not necessary for the simpler mod-
els in Figure 11, for the more complex models in Figure 12 up
to 450 T-junctions are inserted. Quantizing these layouts, to turn
them into conforming quad meshes without T-junctions, requires
either inserting additional singularities, or extending arcs beyond
T-junctions until another singularity is hit. This may lead to very
dense layouts, with 42k, 55k, 284k, 40k, and 124k patches for the
models DRAGON, GARGOYLE, REDBOX, NEPTUNE, and LUCY,
respectively (see Figure 12 center column).

Lyon et al., similar to the proposed method, solve a linear inte-
ger program to compute a quantization of a T-mesh. They strictly
preserve all singularities of the input without adding any new ones
and generate conforming layouts without any T-junctions. For the
simpler models in Figure 11 this method achieves coarse layouts of
high quality. But their strict adherence to the original layout vertex
positions leads to layouts that are denser than the non-conforming
ones of [PPM∗16] for the more complex models in Figure 12.
Coarser layouts can be achieved by increasing α at the cost of more
directional deviation and quad elements with higher distortion.

On the simpler models, shown in Figure 11, our relaxed approach
is able to outperform both previous methods in terms of layout sim-
plicity while at the same time improving or preserving the geo-
metric quality of quad elements, measured by the minimum scaled
Jacobian. Only the parameter α was varied for these experiments;
r was kept at 2.0 in all 12 cases. However, notice that since sin-
gularities are relatively sparse in these simpler models, the layout
complexity reduction is moderate. In contrast, on the more complex
models in Figure 12 we achieve numbers of patches that are only
fractions of those of [LCK21] and are lower than even the non-
conforming ones of [PPM∗16]. Element quality, see Table 2, lies
in the same range, with MSJavg commonly between these previous
methods, and MSJmin not rarely better than both.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

Figure 11: Comparison on models of Figure 3 in [PPM∗16] and Figure 5 in [LCK21]. Listed numbers are α | number of patches | MSJavg.

7. Limitations & Future Work

We presented a method for the generation of coarse quad layouts
which utilizes layout vertex movements to achieve better results,
either by moving them to improve the layout edge alignment, or by
completely merging them to reduce the total number of layout ver-
tices. Our experiments show that the resulting layouts are of high
quality and coarser than the results of other state-of-the-art layout
generation algorithms.

Typically, our algorithm takes roughly twice the amount of time
than the similar algorithm of [LCK21] that strictly preserves all
vertices. However, on some models with high singularity density
solving our linear integer program may take an unexpectedly long
time (cf. LION in Figure 10 and REDBOX in Table 2). This is prob-
ably due to the index constraints which for each singularity adds a
constraint for each other vertex reachable within r. Here it could be
interesting to investigate whether a specialized solver can reduce
the expected run-time. Another option could be to solve the prob-
lem iteratively and to add constraints lazily only for those singular-
ities that collapsed into a single vertex with undesired singularity
index.

Currently, our formulation considers vertex movement only lo-
cally for each pair of vertices which could potentially be connected
by a layout edge and optimistically assumes that the vertices can ac-
tually be moved the full distance in case the layout edge is formed.
If for two or more layout edges a movement is assumed in con-
flicting directions the resulting separatrices may deviate more than
expected from the intended directions as the vertex could not be
moved in both directions. To remedy this it would be interesting to
include the actual vertex movement into the linear program formu-
lation to prevent conflicting vertex movement assumptions.

Acknowledgements

The authors thank Jan Möbius for creating and maintaining the
geometry processing framework OpenFlipper [MK12]. Models
were provided by [MPZ14, PPM∗16]. This work was supported
by the Gottfried-Wilhelm-Leibniz Programme of the Deutsche
Forschungsgemeinschaft (DFG) and in part funded by the Deutsche
Forschungsgemeinschaft (DFG) - 427469366.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

Cross Field [PPM∗16] [PPM∗16]
conforming

[LCK21] Ours

#P = 1024 (90) #P = 41905 #P = 2941 #P = 735

#P = 528 (44) #P = 55631 #P = 1427 #P = 400

#P = 4586 (450) #P = 284263 #P = 14165 #P = 1277

#P = 640 (62) #P = 40385 #P = 1554 #P = 441

#P = 671 (62) #P = 124420 #P = 5201 #P = 514

Figure 12: Comparison with [PPM∗16] and [LCK21]. The number indicates the number of patches in the layout. For [PPM∗16] the
number in brackets is the number of T-junctions. For the conforming version of [PPM∗16] we show the complete base complex (without any
T-junctions) of the quad meshes published with the corresponding paper. [LCK21] and ours do not produce any T-junctions. Also see Table 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, M. Campen, & L. Kobbelt / Simpler Quad Layouts

Model Method α r #P #T #Sout MSJmin MSJavg time

DRAGON
[PPM∗16] 1024 90 450 0.015 0.928 64.0 s
[LCK21] 25◦ 2941 0 343 0.023 0.977 2.1 s
ours 25◦ 1.0 735 0 276 0.164 0.959 4.5 s

GARGOYLE
[PPM∗16] 528 44 178 0.118 0.973 18.2 s
[LCK21] 25◦ 1427 0 141 0.100 0.981 0.5 s
ours 25◦ 2.0 400 0 106 0.223 0.978 1.5 s

REDBOX
[PPM∗16] 4586 450 1214 0.007 0.961 209.0 s
[LCK21] 25◦ 14165 0 1170 0.317 0.981 4.3 s
ours 25◦ 2.0 1277 0 422 0.292 0.966 >1000.0 s

NEPTUNE
[PPM∗16] 640 62 344 0.069 0.958 32.9 s
[LCK21] 25◦ 1554 0 226 0.202 0.977 1.1 s
ours 25◦ 1.0 441 0 167 0.403 0.963 2.2 s

LUCY
[PPM∗16] 671 62 243 0.046 0.965 101.0 s
[LCK21] 15◦ 5201 0 173 0.219 0.986 1.4 s
ours 15◦ 1.0 514 0 115 0.251 0.969 3.0 s

Table 2: Statistics accompanying Figure 12. #P, #T, #Sout, MSJmin, MSJavg are number of layout patches, T-junctions, resulting singularities,
minimum and average minimal scaled Jacobian of the quads, respectively. For REDBOX we stopped the ILP solver after 1000 s and show the
best solution it had found so far (with a remaining optimality gap of 10%) – a first solution (1404 patches, 16% gap) was found after 325s.

References
[BJB∗11] BHATIA H., JADHAV S., BREMER P.-T., CHEN G., LEVINE

J. A., NONATO L. G., PASCUCCI V.: Edge maps: Representing flow
with bounded error. In Proc. IEEE Pacific Visualization Symposium
(2011), p. 75–82. 2

[BLK11] BOMMES D., LEMPFER T., KOBBELT L.: Global structure
optimization of quadrilateral meshes. Comp. Graph. Forum 30, 2 (2011),
375–384. 2

[BLP∗13] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., SILVA C.,
TARINI M., ZORIN D.: Quad-mesh generation and processing: A survey.
Comp. Graph. Forum 32, 6 (2013), 51–76. 1

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-
rangulation. ACM Trans. Graph. 28, 3 (2009), 77:1–77:10. 2, 7, 8

[Cam17] CAMPEN M.: Partitioning surfaces into quadrilateral patches:
A survey. Computer Graphics Forum 36, 8 (2017), 567–588. 1

[CBK15] CAMPEN M., BOMMES D., KOBBELT L.: Quantized global
parametrization. ACM Trans. Graph. 34, 6 (2015). 2, 3

[CK14] CAMPEN M., KOBBELT L.: Quad layout embedding via aligned
parameterization. Comp. Graph. Forum 33, 8 (2014), 69–81. 4, 7

[DSC09] DANIELS J., SILVA C. T., COHEN E.: Localized quadrilateral
coarsening. In Comp. Graph, Forum (2009), vol. 28, pp. 1437–1444. 2

[DSSC08] DANIELS J., SILVA C. T., SHEPHERD J., COHEN E.: Quadri-
lateral mesh simplification. ACM Trans. Graph. 27, 5 (2008), 148. 2

[DVPSH14] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Designing n-PolyVector fields with complex polyno-
mials. Computer Graphics Forum 33, 5 (2014). 2

[EBCK13] EBKE H.-C., BOMMES D., CAMPEN M., KOBBELT L.:
QEx: Robust quad mesh extraction. 168:1–168:10. 7

[ECBK14] EBKE H.-C., CAMPEN M., BOMMES D., KOBBELT L.:
Level-of-detail quad meshing. ACM Trans. Graph. 33, 6 (2014). 2

[EGKT08] EPPSTEIN D., GOODRICH M. T., KIM E., TAMSTORF R.:
Motorcycle Graphs: Canonical Quad Mesh Partitioning. Comp. Graph.
Forum 27, 5 (2008), 1477–1486. 2, 3

[GO21] GUROBI OPTIMIZATION L.: Gurobi optimizer reference man-
ual, 2021. URL: http://www.gurobi.com. 7

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally optimal direction fields. ACM Trans. Graph. 32, 4 (2013), 59. 2

[LCBK19] LYON M., CAMPEN M., BOMMES D., KOBBELT L.:
Parametrization quantization with free boundaries for trimmed quad
meshing. ACM Trans. Graph. 38, 4 (2019). 2, 3, 4, 6, 7

[LCK21] LYON M., CAMPEN M., KOBBELT L.: Quad layouts via con-
strained t-mesh quantization. Computer Graphics Forum 40, 2 (2021).
2, 3, 4, 6, 8, 9, 10, 11

[MC19] MANDAD M., CAMPEN M.: Exact constraint satisfaction for
truly seamless parametrization. Comp. Graph. Forum 38, 2 (2019). 2

[MK12] MÖBIUS J., KOBBELT L.: OpenFlipper: An open source ge-
ometry processing and rendering framework. In Curves and Surfaces,
vol. 6920 of Lecture Notes in Computer Science. 2012. 9

[MPZ14] MYLES A., PIETRONI N., ZORIN D.: Robust field-aligned
global parametrization. ACM Trans. Graph. 33, 4 (2014). 2, 3, 4, 5, 6, 9

[PPM∗16] PIETRONI N., PUPPO E., MARCIAS G., SCOPIGNO R.,
CIGNONI P.: Tracing field-coherent quad layouts. Computer Graphics
Forum 35, 7 (2016). 2, 4, 8, 9, 10, 11

[PZKW11] PENG C.-H., ZHANG E., KOBAYASHI Y., WONKA P.: Con-
nectivity editing for quadrilateral meshes. ACM Trans. Graph. 30, 6
(2011), 141. 2

[RP17] RAZAFINDRAZAKA F. H., POLTHIER K.: Optimal base com-
plexes for quadrilateral meshes. Computer Aided Geometric Design 100,
52-53 (2017), 63–74. 2

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Trans. Graph.
36, 4 (2017). 6

[RRP15] RAZAFINDRAZAKA F. H., REITEBUCH U., POLTHIER K.:
Perfect matching quad layouts for manifold meshes. Comp. Graph. Fo-
rum 34, 5 (2015), 219–228. 2

[RS14] RAY N., SOKOLOV D.: Robust polylines tracing for N-symmetry
direction field on triangulated surfaces. ACM Trans. Graph. 33, 3 (2014).
2, 3

[RVAL09] RAY N., VALLET B., ALONSO L., LÉVY B.: Geometry-
aware direction field processing. ACM Trans. Graph. 29, 1 (2009). 2

[RVLL08] RAY N., VALLET B., LI W. C., LÉVY B.: N-symmetry di-
rection field design. ACM Trans. Graph. 27, 2 (2008), 10:1–10:13. 4

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D., PUPPO
E.: Practical quad mesh simplification. Computer Graphics Forum 29,
2 (2010), 407–418. 2

[TPP∗11] TARINI M., PUPPO E., PANOZZO D., PIETRONI N.,
CIGNONI P.: Simple quad domains for field aligned mesh parametriza-
tion. ACM Trans. Graph. 30, 6 (2011). 2, 4

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. Comp.Graph.Forum 35,2 (2016). 2

[VOS19] VIERTEL R., OSTING B., STATEN M.: Coarse quad layouts
through robust simplification of cross field separatrix partitions. Proc.
28th International Meshing Roundtable (2019). 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://www.gurobi.com

