
14

High-Performance Image Filters via Sparse Approximations

KERSTEN SCHUSTER, PHILIP TRETTNER, and LEIF KOBBELT,
Visual Computing Institute, RWTH Aachen University

Fig. 1. Our method finds multi-pass sparse convolution filters that approximate a user-provided filter mask.
For example, the shown filter consists of 7 passes each performing 7 image lookups with bilinear interpolation
and is visually almost identical to a 199× 199 Gaussian blur. Top row shows per-pass sample positions, bottom
row shows how the convolved passes converge towards the target mask. Our approximation requires only
49 samples, compared to 398 samples for a separated blur (200 samples with linear interpolation). While
there is overhead for additional passes, our filter still only takes 0.74ms while a separated Gaussian needs
1.64ms with and 4.46ms without interpolation and baking to shader code (on an NVidia GTX 1080 filtering a
1920 × 1080 8-bit RGB image).

We present a numerical optimization method to find highly efficient (sparse) approximations for convolutional

image filters. Using amodified parallel tempering approach, we solve a constrained optimization that maximizes

approximation quality while strictly staying within a user-prescribed performance budget. The results are

multi-pass filters where each pass computes a weighted sum of bilinearly interpolated sparse image samples,

exploiting hardware acceleration on the GPU. We systematically decompose the target filter into a series of

sparse convolutions, trying to find good trade-offs between approximation quality and performance. Since

our sparse filters are linear and translation-invariant, they do not exhibit the aliasing and temporal coherence

issues that often appear in filters working on image pyramids. We show several applications, ranging from

simple Gaussian or box blurs to the emulation of sophisticated Bokeh effects with user-provided masks. Our

filters achieve high performance as well as high quality, often providing significant speed-up at acceptable

quality even for separable filters. The optimized filters can be baked into shaders and used as a drop-in

replacement for filtering tasks in image processing or rendering pipelines.

CCS Concepts: · Computing methodologies→ Rendering; Image processing.

Additional Key Words and Phrases: image filters, gaussian blurs, custom filter masks

Authors’ address: Kersten Schuster, Schuster@cs.rwth-aachen.de; Philip Trettner, trettner@cs.rwth-aachen.de; Leif Kobbelt,

kobbelt@cs.rwth-aachen.de,

Visual Computing Institute, RWTH Aachen University, Ahornstraße 55, Aachen, Germany, 52074.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:

//doi.org/10.1145/3406182.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:2 Kersten Schuster, Philip Trettner, and Leif Kobbelt

ACM Reference Format:

Kersten Schuster, Philip Trettner, and Leif Kobbelt. 2020. High-Performance Image Filters via Sparse Ap-

proximations. Proc. ACM Comput. Graph. Interact. Tech. 3, 2, Article 14 (August 2020), 19 pages. https:

//doi.org/10.1145/3406182

1 INTRODUCTION

Filtering is an important tool in digital signal processing and is used for manipulating all kinds of
data, e.g. for cleaning or separating certain parts. In the context of 2D and 3D imagery, filtering is
frequently used to extract features like corners [Harris et al. 1988] or edges [Canny 1986], or entire
frequency bands for the purpose of sharpening or blurring [Gonzales and Woods 2018]. Besides
artistic usage, (Gaussian) blurs are an elementary component of rendering post-processes like
Bloom, Depth of Field or Screen-Space Ambient Occlusion techniques. Especially large filters require
a prohibitive number of texture fetches. Some filters, such as the Gaussian blur, are separable
and thus can be decomposed into two passes of 1D blurs. On modern graphics hardware, bilinear
interpolation of texture samples is especially efficient and can be exploited to roughly double
the performance of a separated blur. Often, the exact filter shape is of secondary concern and
approximations suffice. Kawase shows how a multi-pass filter with a simple pattern of four samples
that lie exactly in the center of four pixels (and thus maximally exploit bilinear filtering) can be an
effective approximation of a Gaussian blur [Kawase 2003].
In this work, we generalize this method and present an optimization framework based on

a modified parallel tempering approach [Swendsen and Wang 1986] that decomposes almost
arbitrary filter masks into a series of sparse convolutions. Each pass of the resulting filter computes
a weighted sum of a small number of texture lookups that can lie at fractional positions to make
use of bilinear filtering. We show how this strategy finds approximations that are simultaneously
high-performance and high-quality. Even for the well-researched Gaussian blur, we find multi-pass
filters that are significantly cheaper than the separated versions while taking only a minimal hit in
quality. As our method approximates arbitrary target shapes, we demonstrate that it is possible to
create inexpensive filter masks that simulate camera Bokeh effects or fulfill other artistic purposes.
In summary, we contribute:

• an optimization method for approximating image filters from user-provided masks via de-
composition into multi-pass sparse convolutions

• new fast and high-quality approximations to Gaussian blurs, especially larger ones
• a collection of several ready-to-use filters for real-time rendering applications

In the remainder of the work we describe approaches related to our filtering methods in Section 2
and the algorithm details in Section 3. Results and evaluations of our optimization algorithms and
produced filters are shown in Section 4. Finally, we show up limitations of the presented methods
and possible areas for future research in Section 5 before concluding our work in Section 6.

2 RELATED WORK

The applications of image filters and even that of blurs are manifold as they range from 2D
image optimization to machine learning and real-time rendering tasks. Due to the vast amount of
conducted research in this field, we restrict ourselves to filtering methods that target interactive
performance. A general overview over image filtering can be found in [Gonzales and Woods 2018].

2.1 Gaussian and Box Filtering

For graphics applications and especially rendering, discrete Gaussian blurs are typically truncated
so that their support becomes finite and its performance increases. As the contribution of values is

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:3

1/8

1/8

1/8

1/8

1/2

1/6

1/6

1/6

1/6

1/12

1/12

1/12

1/12

Fig. 2. Typical sampling stencils for theDual Filtering (leftmost two images) and the Kawasemethod (rightmost
three images). The Dual Filtering stencils have a fixed support in the downsampling and upsampling steps but
perform sampling on various different resolutions. The Kawase passes (here a [1, 2, 3]-scheme) are typically
run on the same resolution. The red center rectangles denote the currently processed pixel in the render
target and the green dots show the sample positions within the input texture (sampling grid pictured in
black). As the first two pictures describe downsampling and upsampling steps, the depiction of the processed
pixel (red) is twice and half the sampling grid cell size, respectively.

rather low further away from the mean, the difference is usually negligible. Another justification
for that is the decreased accuracy in renderingÐtypically 8 or 16 bit per valueÐthat does not
permit more than two or three digits of precision anyway. 2D Gaussian blurs are separable into
two 1D blurs in orthogonal directions which decreases complexity from O(n2) to O(n) without
compromising quality. For larger filter sizes, however, the cost can still be prohibitively high,
especially if the input image size is 3840 × 2160 or beyond. The fact that small errors in a Gaussian
filter mask are barely noticeable in the filtered result makes it attractive to trade accuracy for
efficiency. The separated blur can be further improved by making use of bilinear sampling which
is hardware-accelerated on modern GPUs [Rákos 2010]. The actual sampling position has to be
adapted to the individual weights of the two influencing pixels.

For box blurs, summed-area tables have been proposed to accelerate filtering in DirectX [Hensley
et al. 2005] or CUDA [Nehab et al. 2011]. Another means to perform filtering on the GPU are
Fast Fourier Transforms. The necessity of padding input images to power-of-two sizes, significant
overhead for small kernel sizes and additional processing for multi-channel inputs [Fialka and Cadik
2006] makes them often impractical for use in rendering. An alternative usage for the (repeated)
use of summed-area tables is demonstrated by Kosloff et al.. Rather than gathering pixel values,
they introduce filter spreading which can be seen as reversing the gathering process [Kosloff et al.
2009] and enables the use of spatially-varying kernels. The currently fastest implementations of
large low-order low-pass filters are based on a recursive filter formulation [Nehab and Maximo
2016; Nehab et al. 2011]. Their construction, however, relies on the separability of the filter kernel
while we aim at arbitrary filter shapes.

A crude but fast approximation to a box blur is mipmap filtering. At first, a multiresolution
pyramid is created from the input by successively averaging four neighboring pixels of the previous
level. The final blur result is then picked as the mipmap level that most corresponds to the desired
blur radius. Hardware-accelerated trilinear filtering enables sampling between neighboring pixels
and consecutive detail levels. While the difference to a Gaussian blur is tremendous, the high
performance can compensate for the poor quality in some situations.

TheDual Filtering approach by Bjùrge performsmultiple passes of downsampling and upsampling
with constant filter masks [Bjùrge 2015]. In contrast to naïve mipmapping, the stencils used for
upsampling and downsampling produce a more circular shape which prevents blocky artifacts.
Figure 2 (leftmost two images) shows exemplary stencils for the two different types of passes as
proposed in [Bjùrge 2015]. The advantage of this approach lies in the high performancewhich results
from the lower number of overall processed fragments due to the intermediate downsampling. On
the downside, dual filters have to be designed experimentally, as there is no generic translation

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:4 Kersten Schuster, Philip Trettner, and Leif Kobbelt

from blur radius to filtering levels or texel fetch offsets. Lee et al. propose an approach similar to
mip mapping or the aforementioned Dual Filtering but perform non-linear interpolation between
mip map levels [Lee et al. 2009b].
Multi-resolution methods are generally quite fast but the excessive downsampling of the input

images can result in artifacts, especially in the vicinity of sharp features.
Kawase proposed a class of multipass blur algorithms that make use of hardware-accelerated

bilinear filtering [Kawase 2003]. Every pass consists of four rotationally symmetric texture fetches
and is thus simply defined by one of the 2D offsets to the processed pixel (cf. Figure 2, rightmost
three images). To our knowledge, there is no generic way of approximating Gaussian filters of
arbitrary size using it and filters are typically found experimentally. A typical choice resembling a
35 × 35 Gaussian blur is e.g. a (0, 1, 2, 2, 3) offset tuple [Strugar 2014].

2.2 Non-Gaussian Filter Shapes

A typical real-time rendering use case for blurring is depth of field. Mimicking focal distance and
aperture size of a real-world camera, the out-of-focus blur and other lens effects are simulated. Due
to smoothing out towards the edges, Gaussian filtering cannot emulate the polygonal or circular
shapes resulting from the diaphragm blades of cameras. When it comes to quality, ray tracing seems
like a particularly suitable method to simulate e.g. bokeh effects of a given camera model. Early
approaches include regular [Potmesil and Chakravarty 1982] and stochastic distribution of rays
[Cook 1986] to simulate depth-of-field effects. More recently, Lee et al. proposed a combination of
classical rasterization and additional lens-rays per pixel to account for out-of-focus effects and lens
aberrations [Lee et al. 2010]. Joo et al. even consider lens imperfections due to manufacturing to
focus on realism while still achieving interactive frame rates [Joo et al. 2016].
In rasterization, depth-of-field is either implemented as a scattering or a gathering technique.

For scattering, every pixel is covered by a shaped sprite the size of the pixel’s circle of confusion.
All sprites are additively blended to account for typical bokeh effects. The sprite shape is dictated
by a texture mask and can thus be arbitrary which makes this technique very versatile (cf. [Lee
et al. 2008]). On the downside, larger circles of confusionÐand thus larger spritesÐcreate massive
overdraw resulting in poor performance.

Gathering techniques, on the other hand, fetch weighted color samples within the vicinity of the
evaluated pixel, typically within a certain shape area (cf. [Lee et al. 2009a]) and often in stochastic
patterns. As circular or polygonal shapes are in general not separable, naïve implementations
suffer either from low quality due to sparse sampling or from low performance due to exhaustive
sampling.

Sousa separates the filtering of arbitrary shapes into a sparse gathering pass and a small-kernel
blur that fills the gaps afterwards [Sousa 2013]. White and Barré-Brisebois describe the composition
of hexagonal shapes by combining three rhombi in two linear-time passes [White and Barré-
Brisebois 2011]. McIntosh et al. compose separable bokeh shapes from the intersection or union of
parallelograms [McIntosh et al. 2012]. Besides being limited to a certain class of angular shapes, the
used min/max operations are not linear and introduce artifacts if shapes overlap. Piponi generalizes
the axis-aligned rectangles in box filters to convex polygonswith vertices at integer positions [Piponi
2012]. Making use of summed-area tables, the number of needed texture fetches is independent of
the kernel size. Moersch and Hamilton present a separation of circular and polygonal convolutions
by writing into a three-dimensional render target between two consecutive passes [Moersch and
Hamilton 2014]. Their method is limited to convex shapes and consumes a considerable amount
of video memory. McGraw decomposes arbitrary filter shapes into a sum of multiple pairs of 1D
convolutions using a singular value decomposition [McGraw 2015]. The resulting low-rank linear

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:5

filters consist of different pairs of horizontal and vertical passes. The user can provide the filter
mask and choose the rank to affect the performance/quality trade-off.
Gotsman proposes a constant-time filtering approach for arbitrary and varying filter kernels,

but requires a costly pre-filtering of the input image.[Gotsman 1994]
Garcia computes separable circular bokeh shapes in linear time facilitating convolutions in the

frequency domain and complex number render targets [Garcia 2017].
We present an approach that aims for the best filter within a pre-defined budget. The method

by McGraw [McGraw 2015] (see above) comes closest to that, but their overall number of texture
fetches is at least twice the shape diameter and often multiple times higher (depending on the
chosen rank). We facilitate a combination of multiple passes and hardware-accelerated bilinear
filtering and show that this significantly increases performance especially for Gaussian blurs, but
also for other filter shapes.

2.3 Texture Filtering

Interpreting textures as discrete samples of smooth images makes the need for filtered texture
access apparent. Hardware-accelerated sampling is typically restricted to trilinear filtering (linearly
interpolating between bilinear samples from two consecutive mip map levels), while higher-order
methods are often desired for enhanced visual quality.
High-quality texture filtering methods have been proposed for isotropic [Manson and Schae-

fer 2013; Manson and Sloan 2016] and anisotropic sampling [Mavridis and Papaioannou 2011;
McCormack et al. 1999]. In these cases, the filtering kernels are typically very small and their
current single-pass implementations are hard to beat. A multi-pass algorithm would most likely
not increase performance, especially as additional passes add an overhead. Considering e.g. the
case of performing bicubic filtering with only four bilinear samples [Sigg and Hadwiger 2005]
(see [Djonov 2012] for implementation details), a two-pass algorithm that separates horizontal
and vertical texture fetches, would still need four samples altogether. A similar situation is given
in [Manson and Sloan 2016] in the context of pre-filtering environment cube maps in real-time:
Bilinear sampling is used to reduce the number of texture fetches from 16 to 4 for quadratic B-spline
filtering in mip map generation [Manson and Sloan 2016].

3 METHOD

Let A be the convolution kernel for an image filter that we want to optimize. Given an input image
f (x,y), the output is computed via

д(x,y) = A ∗ f (x,y). (1)

Typical examples for A are Gaussian blurs, box filters, Bokeh shapes for depth-of-field, or Airy
disks for bloom.
While image filters are ubiquitous in real-time applications, they often present significant

challenges to evaluate within the computational budget. Our goal is to find alternative filters B that
are substantially cheaper to evaluate and approximate A sufficiently well. Especially large blurs
tend to be expensive even though their result is typically very smooth and small imperfections in
the filter are hardly visible.

3.1 Sparse GPU Filters

Separable filters and the Kawase blur have in common that they decompose the large filter A into
multiple filters that, when applied sequentially, result in the original filter, or an approximation
thereof. We generalize this and formulate the following task:

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:6 Kersten Schuster, Philip Trettner, and Leif Kobbelt

Given a convolutional image filter A, we solve the following filter approximation problem with

constrained budget:

min
B1, ...,Bn

L(A,B1 ∗ · · · ∗ Bn)

s.t. cost({B1, . . . ,Bn}) ≤ C
(2)

The result is a filter B = B1 ∗ · · · ∗ Bn that approximates A and stays within the budget limit C .
The loss function L(·, ·) can be freely chosen. We motivate three choices for different use cases in
Section 3.3.
B is intended to be implemented as a multi-pass GPU algorithm with n passes, either in fragment

or compute shaders. Each Bi computes a weighted sum of ki samples:

(Bi ∗ f )(x,y) =

ki
∑

j=1

f (x + ∆x j ,y + ∆yj ) ·w j (3)

The sample offsets in f (x + ∆x j ,y + ∆yj ) can be fractional, resulting in a bilinear interpolation of
the four neighboring integer locations. This interpolation is especially efficient on the GPU and the
main motivation behind the Kawase blur because a single texture lookup effectively fetches four
samples at once.
cost(·) is an estimate of the computational costs of applying the filter B. The actual costs are

extremely hard to quantify as they depend on many GPU internals, such as texture cache behavior,
on-the-fly texture compression, and shader scheduling. We found the total number of samples plus
per-pass fixed costs to be a suitable measure in practice:

cost({B1, . . . ,Bn}) = λ · n +

n
∑

i=1

ki (4)

where λ is a user parameter.
Figure 1 shows the structure and result of a n = 7, ki = 7 filter fitted to a 199× 199 Gaussian blur.

3.2 Optimization

The optimization problem posed in the previous section is challenging to solve. We have discrete
variables n (number of passes) and ki (number of samples per pass) as well as continuous variables,
∆x j and ∆yj (sample offsets), and w j (sample weight). The number of variables changes if the
structure of the filter (number of passes or samples) changes. Any change in any variable has almost
global influence since changing even a single sample often affects more than 50% of B’s impulse
response.
Due to the mixture of continuous and discrete variables and their indirect, non-local influence,

purely gradient-based approaches perform poorly on our problem. Even if only used on the
continuous variables, gradient descent or second order methods tend to converge to bad local
minima.
We achieved the best results with a modified parallel tempering [Swendsen and Wang 1986]

approach. A set of k candidate filters Bi , each consisting of multiple passes
{

Bi1, . . . ,B
i
n

}

, is main-
tained. In each iteration, the filters are randomly mutated with decreasing magnitude, from a big
change of B1 to a small change of Bk . These are called temperature bands. The changed filter B′i

replaces the previous candidate Bi with a probability of

p = min

(

1,
L(A,Bi )

L(A,B′i )

)

, (5)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:7

also known as the Metropolis-Hastings criterion. If the new filter is better, it is always accepted,
otherwise only with a probability based on the difference in approximation quality. After a certain
number of iterations, all Bi are replaced by the current best filter (the synchronization step).

Filters with more passes or samples can achieve better approximation quality but are also more
complex to optimize. Accordingly, the optimization tends to get stuck in local minima of too
complex filters and the probability of jumping into a better configuration is low. We alleviate
this by employing a niching technique as is often used in evolutionary optimization: Instead of
running a single parallel tempering, we concurrently run c instances where each instance i = 1..c is
responsible for the filter cost bracket

(

i−1
c

·C, i
c
·C

]

. When randomly changing a filter causes a
change in costs, it is moved to the appropriate instance. In this way, cheaper but lower-quality filters
can be used as stepping stones to find good local minima and evolve into more costly, higher-quality
ones. We achieved the best results with 5ś10 temperature bands and 3ś6 cost brackets, depending
on the target filter complexity (lower complexity requires less bands and brackets).

3.2.1 Candidate Mutation. Given a candidate B in a temperature band T ∈ 1..k , we perform three
different types of changes when creating a new candidate B′.
First, we apply continuous mutations by adding random values up to 2−T to each sample offset

∆x j and ∆yj . The sample weightsw j are more sensitive to change, so we only add up to 2−T /10 to
them.
This will never alter the structure or cost of a filter, so we also apply morphological mutations

that modify the filter structure (number of passes or samples) while trying to maintain the same
loss value. These operations do not always seem useful in isolation but in combination with the
continuous mutations they allow efficient sampling of the variable-dimensional optimization space,
similar to how reversible-jump MCMC [Green 1995] works. We found the following operations to
be useful:

• merge samples: replace two samples of the same pass by a single one, adding their weights
and randomly interpolating between their sample offsets.

• split samples: duplicate a sample, randomly splitting the previous weight.
• remove sample: randomly remove a sample from a pass.
• add zero sample: add a sample of zero weight to a pass.
• merge passes: replace two passes a and b by an approximate convolution of them: for each
sample pair (sa, sb ) ∈ a × b, create a new sample with sample offsets added and weights
multiplied. To prevent an explosion of sample counts, we immediately merge samples until a
maximum sample count is met.

• remove pass: randomly remove a pass from the filter.
• add neutral pass: add a new pass consisting of samples with random offset and zero weight
and samples with zero offset and weights that sum to 1.

Finally, we employ domain-specific mutations that try to create patterns that we observed in
good filters:

• normalize weights: ensure that the sample weights sum to 1 for each pass.
• radial symmetry: Take a random sample from a pass Bi to compute radius r and angle
offset α . All sample offsets ∆x j and ∆yj of that pass are then set to r sin(2π j/ki + α) and
r cos(2π j/ki + α) with weight 1/ki , creating a circular pattern. Note that this contains the
Kawase blur pattern as a special case (ki = 4, α = π/4).

Not all operators are applied for every candidate. Each operation has a certain probability to
be applied. We use between 1ś5% per operation for the topological operations, scaling linearly
with T . Radial symmetry is enforced with 5% probability on a single, randomly chosen pass and

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:8 Kersten Schuster, Philip Trettner, and Leif Kobbelt

with another 5% on the whole filter. If weight normalization is employed, we apply it with a
90% probability. Figure 4 shows how the domain-specific operations speed up the optimization
convergence.

3.3 Loss Function

Purely convolutional image operations are linear and translation-invariant (shifting the input in any
direction shifts the output by the same vector). Such LTI filters are fully defined by their impulse
response (f ∗ δ )(x,y), i.e. by their output when given a black input with a single white pixel in the
center. Thus, a loss function d(A,B) that is based on the impulse response difference is independent
of concrete images.
We found that there is no universal loss function and the choice depends on the intended use

case. However, a few building blocks are useful. Note that common perceptually-motivated image
metrics cannot be used as impulse responses are not directly perceived.

The root-mean-square error (RMSE) of the impulse response difference is a good base indicator
of the approximation quality:

LRMSE(A,B) =

√

1

N

∑

x ,y

∥(A ∗ δ )(x,y) − (B ∗ δ )(x,y)∥2 (6)

where N is the number of non-zero pixels in the bounding box of (A ∗ δ )(x,y). However, the
sign of the difference at individual pixels is not considered. Thus, an average 5% deviation might
conserve the image brightness (if the deviations are uncorrelated), or make the image 5% darker or
5% brighter (if strongly correlated). This is often undesirable but can be prevented by penalizing
differences in filter energy:

LEnergy(A,B) =

�

�

�

�

�

∑

x ,y

(A ∗ δ )(x,y) −
∑

x ,y

(B ∗ δ )(x,y)

�

�

�

�

�

(7)

3.3.1 Blurs. Filters that are intended to be used as blurs benefit from the error-distributing tendency
of RMSE. However, energy preservation is quite important as image-wide brightness changes are
immediately visible:

LBlur(A,B) = LRMSE(A,B) +M ·max(0, LEnergy(A,B) − τ ), (8)

where the second part is used as a soft barrier with a large factorM = 100 penalizing the amount of
LEnergy(A,B) that surpasses a user-defined threshold τ . We use τ = 0.01 to avoid blurs that change
brightness by more than 1%.

3.3.2 Shape-Preservation. For filters where the shape is very important, e.g. for Bokeh or bloom
effects, we found filters of subjectively better quality by breaking symmetry: It is more noticeable
if B’s impulse response has a bright pixel where A’s is dark than the other way around. We model
this by defining the weighted impulse response difference

Dδ (x,y) = [(A ∗ δ )(x,y) − (B ∗ δ )(x,y)]

·

(

1 + ω ·

(

1 −
(A ∗ δ )(x,y)

maxx ′
,y′(A ∗ δ )(x ′

,y ′)

))

,

(9)

where ω is a user parameter which we e.g. set as ω = 3 for the approximation of custom filter
shapes in Section 4.4.
Intuitively, in Dδ (x,y), differences are weighted by 1 for regions that are łbrightž in A and by

1 + ω for regions that are łdarkž. This can be used in a modified RMSE loss:

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:9

0 20000 40000 60000 80000

target mask size (total number of pixels)

104

105

106

ev
al
u
at
io
n
s
p
er

se
co
n
d

passes x samples

3 x 2

5 x 4

7 x 6

9 x 10

Fig. 3. Candidate evaluations per second depending on target mask size. For small targets and low numbers
of passes and samples, one million candidates can be evaluated per second. For larger masks, the throughput
decreases drastically. Evaluated masks are square and have side lengths between 9 and 299 pixels.

LShape(A,B) =

√

1

N

∑

x ,y

∥Dδ (x,y)∥
2 (10)

3.3.3 Overfitting. The previously described losses are defined on the impulse responses. While we
motivate different losses for different use cases, these proxy metrics are not perfect. If the use case
is clearly defined, e.g. a specific effect used in a game with a distinct visual style, it is also possible
to directly łoverfitž the filter on a set of representative images I ∈ I:

LOverfit(A,B) =
∑

I ∈I

d ′(A ∗ I ,B ∗ I ), (11)

where d ′(·, ·) is a user-provided metric on images, e.g. PSNR or SSIM [Wang et al. 2004]. While this
loss is less general and considerably more expensive to evaluate, it can produce superior results if
applicable. Evaluation of loss functions and examples of fitted filters can be found in Section 4.

3.4 Candidate Evaluation

The runtime of our optimization is dominated by the evaluation of the loss function. All the losses
we describe in Section 3.3 require applying the candidate filter on either an impulse or a reference
image. While our filters are by design quite fast, we still need to evaluate millions of candidates
during optimization. To make the evaluation fast, we batch together 200ś1000 candidates, upload
their parameters into a GPU buffer, and use compute shaders to evaluate them. Candidate filters are
padded with trivial passes up to the maximum number of passes in the batch. Two 2D array textures
are used in a ping-pong fashion to compute the filter response with one shader dispatch per pass.
A final compute shader evaluates the selected loss function. While this generic data-driven filter
evaluation is not as fast as the shaders that we generate for a given, fixed filter, we can nevertheless
evaluate up to a million candidates per second on a modern GPU. For the 199 × 199 Gaussian

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:10 Kersten Schuster, Philip Trettner, and Leif Kobbelt

0 50000 100000 150000 200000 250000

candidates

10−4

10−3

L
B
lu
r

domain-specific operation

none

normalize

radial

radial + normalize

(a) 352 Gaussian fit with 5 × 4 samples

0 200000 400000 600000 800000 1000000

candidates

10−3

L
S
h
a
p
e

domain-specific operation

none

normalize

radial

radial + normalize

(b) 352 hexagon fit with 8 × 8 samples

Fig. 4. Convergence behavior of two different scenarios, Gaussian via LBlur (easy) and hexagon via LShape
(challenging). Average and standard deviation over 50 runs are shown. Our domain-specific candidate
mutations speed up convergence if they synergize with the scenario.

example from Figure 1, one million candidates with 7 passes and 7 samples took approximately 21 s
to evaluate on an NVidia GTX 1080. For a 49 × 49 input, only 1.64 s were needed for the evaluation
of the same amount of 5 × 4-filters. Figure 3 describes the evaluation throughput depending on
target mask size. Using the generated filters during optimization is not an option as compiling
individual shaders per candidate is prohibitively expensive, even if the actual evaluation is faster.

4 EVALUATION

4.1 Optimization

Fig. 4 demonstrates the convergence behavior of our optimization and justifies our domain-specific
operations introduced in Section 3.2. In most scenarios, the optimization quickly finds a good first
approximation and then slowly fine-tunes the filter.

Our method works best on Gaussian blurs using LBlur where it converges fast and finds excellent
solutions. Here, both domain-specific operations are beneficial. As the loss penalizes non-normalized
results, frequent re-normalization produces more promising candidates. The larger improvement is
gained by occasionally restoring radial symmetry in some passes. These passes tend to work well
for many symmetric shapes and reduce the effective search space significantly, thus the improved
convergence speed. Note that strict radial symmetry is not optimal due to the bilinear filtering
and the discretized pixel grid. Thus, these operations are only applied probabilistically and the
per-parameter continuous mutation finds a local minimum in the vicinity of the symmetric filter.

Fitting the hexagon using the LShape loss is more challenging. Filter normalization is not important
for the loss and seems to hinder exploration at the tail end of the optimization. Exploiting radial
symmetry still speeds up convergence considerably which makes sense due to the symmetric target
shape. For more complex targets we often see significant loss improvements at unpredictable points
far into the optimization. This manifests itself as a widening standard deviation on the long tail
and seems to indicate that the optimization jumps into regions with better local minima. For even
more complex cases (larger filter masks, non-convex shapes, more passes and samples per pass) we
have seen significant progress well after 10 million candidate evaluations.
The main difficulty of the optimization process can be seen in Fig. 5. Slicing through the loss

landscape makes it immediately visible that the optimization has to work around a myriad of local
minima. Especially during the beginning many clusters of filter configurations lead to plausible

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:11

-4 -2 0 2 4

∆x

-4

-2

0

2

4

∆
y

0.00200

0.00216

0.00232

0.00248

0.00264

0.00280

(a)

-4 -2 0 2 4

∆x

-4

-2

0

2

4

∆
y

0.00026

0.00030

0.00034

0.00038

0.00042

0.00046

0.00050

(b)

-3 -2 -1 0 1 2 3

∆x

-3

-2

-1

0

1

2

3

∆
y

0.0000775

0.0000825

0.0000875

0.0000925

0.0000975

0.0001025

(c)

Fig. 5. Plotting the loss landscape reveals the optimization challenges of our problem. The images show the
loss when a single filter sample is moved: (a) is taken during fitting a hexagon using LShape, (b) for a Gaussian
using LBlur, both after 104 candidates. This highly non-convex loss landscape prevents the use of simple
gradient-based optimization. Only close to convergence does the problem become locally convex, e.g. in (c)
for fitting a dollar sign using LRMSE after 107 candidates. However, this is usually only a local minimum in
our high-dimensional optimization space.

(a) target,
∑

= 1 (b) LRMSE,
∑

= 1.007 (c) LBlur,
∑

= 1.001 (d) LShape,
∑

= 0.947

Fig. 6. The difference between our proposed loss functions becomes more pronounced when working with a
limited performance budget. Shown are the best 3-pass 9-samples-per-pass filters found after 200 million
candidate evaluations. The different losses lead to different trade-offs: LBlur is an energy-preserving version
of LRMSE and LShape (ω = 3) produces crisper shape boundaries at the cost of a higher RMSE.

low-loss regions in our search space. While the problem looks locally convex closer to convergence,
these are only local minima. The parallel tempering always has a certain probability to jump to
other minima, which is what happens in the tail of Fig. 4 (b). However, larger cases have well
above 100 continuous dimensions with many symmetries, which makes finding the global optimum
progressively unlikely. An interesting test is fitting a Dirac impulse with an unnecessarily large
number of passes and samples. Due to the fact that only one pixel is non-zero in the input image (and
also in the filter response), there are countless combinations of passes and samples that minimize
the energy. Applying that filter to an image, however, leads to an unwanted result because of
several (possibly negative) non-centered samples. This situation is a rather unusual one but could
be dealt with e.g. by reducing the maximum number of passes to a reasonable amount or by using
the LOverfit loss function.

4.2 Loss Function

The loss functions from Section 3.3 correspond to different use cases. An example of their difference
is depicted in Fig. 6. In general, LRMSE will not produce energy-conserving filters. This becomes

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:12 Kersten Schuster, Philip Trettner, and Leif Kobbelt

(a) Input maskM (b) Input image I (c) I ′ = M ∗ I (d) I ′
Overfit

(44.5 dB) (e)MOverfit

Fig. 7. The LOverfit loss function can be used to estimate the applied filterM (a) given an unfiltered image
I (b) and the filtered result I ′ (c). The optimized filter was constrained to 3 passes with 8 samples each. Its
impulse response is depicted in (e) and the convolution result of I ∗MOverfit is shown in (d). Optimizing only
the impulse response with LBlur leads to a slightly worse result in this example (43.89 dB, not shown here).

especially pronounced with a limited budget where larger trade-offs are made. The example shows
a fit that will produce 2.7% more energy, which results in a noticeable change in image brightness.
Instead of re-normalizing the filter after fitting, we model energy-preservation directly in LBlur.
When used as Bokeh (e.g. Fig. 10, column łDetailž), the overall shape is more important than the
RMSE, which is what LShape is designed for.
Another approach of finding an approximate filter is to use the LOverfit loss function that

"overfits" a filter to produce an image I ′ from another image I (cf. Figure 7). The drawback of this
method is that it has to convolve the input image I for every loss evaluation which is much more
expensive than computing the impulse response of the evaluated filter.
It is important to note that loss functions are only evaluated within the texture area uploaded

to the GPU but the optimized filters can sample outside of that area. While boundary handling
can be specified explicitly, the optimizer can take advantage of that and sample out-of-bounds
deliberately to reduce costs. We never experienced that behavior for Gaussian filter kernels, but
for more complex shapes like those in Figure 9. A simple yet effective way of circumventing this
problem is to increase the padding of the input mask at the cost of optimization speed.

4.3 Filter Comparison

In Table 2 and Figure 8 we compare the presented strategies in terms of performance and quality
for different input image resolutions. The evaluated filtering technique is a 97 × 97 truncated
3σ -Gaussian blur. As ground truth we compute the weights of a 2D Gaussian directly in the shader
because even the separation introduces rounding errors and floating point inaccuracies. The best
approximation to that is a separated Gaussian. For further performance improvement we make use
of hardware-accelerated linear interpolation and additionally bake filtering weights as constants
into shader code. In general, the timings contain all costs that occur every frame for dynamic
scenes, e.g. the mipmap creation for the mipmap filtering technique. The Dual Filtering consists of 4
downsampling and 4 upsampling passes while the Kawase blur consists of 9 passes with 4 samples
each. Finally, our approximation is a 5-pass shader algorithm with 5 texture fetches per pass. It
is worthwhile noting that for small kernels (below 35 × 35) a well-tweaked separated Gaussian is
a reasonable choice. For larger kernels, however, the costs do not scale very well, especially for
fullscreen blurs. This is also depicted in Table 1 where we show approximations for Gaussian filters
of different kernel sizes.

We found that even if the approximation quality is so low that artifacts in the impulse response
are clearly visible (cf. Table 1, top row), the filtered results are still very close to the ground truth
which might be preferable to a solution that is more exact but also more expensive. Due to decreased

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:13

Table 1. Approximations for Gaussian Filters of different kernel sizes. Quality and cost increase from top to
bottom. Kernel size increases from left to right. Overlay consists of passes × samples-per-pass and filtering
time for a 1920× 1080 RGB 8-bit target. Ground Truth Gauss filtering (łG.T.ž, marked with an asterisk, bottom
row) is separated, makes use of hardware-accelerated linear interpolation and was baked into shaders for
maximum performance.

35 × 35 65 × 65 95 × 95 125 × 125 199 × 199 333 × 333 555 × 555

4 × 4 0.26ms 5 × 4 0.33ms 6 × 4 0.39ms 6 × 4 0.40ms 6 × 6 0.54ms 7 × 5 0.59ms 7 × 7 0.79ms

4 × 5 0.28ms 5 × 6 0.38ms 6 × 6 0.48ms 6 × 6 0.50ms 6 × 7 0.61ms 7 × 7 0.75ms 7 × 9 0.98ms

5 × 4 0.33ms 6 × 4 0.39ms 6 × 8 0.54ms 6 × 8 0.58ms 7 × 7 0.74ms 7 × 9 1.00ms 8 × 8 1.03ms

G.T. 0.34ms∗ G.T. 0.58ms∗ G.T. 0.82ms∗ G.T. 1.05ms∗ G.T. 1.64ms∗ G.T. 2.71ms∗ G.T. 4.48ms∗

Table 2. Comparison of different filtering algorithms in terms of performance and quality for a 97×97 truncated
3σ -Gaussian blur on an NVidia GTX 1080. Algorithms were applied on the photo shown in Figure 8. Time is in
ms and peak signal-to-noise ratio (PSNR) in dB. Render targets have 16 bit resolution per channel. Apart from
the two-dimensional Gaussian (Ground Truth), all weights are baked into shaders for increased performance.
The number of samples for the separated Gaussian are halved by making use of linear interpolation.

2D Gauss Sep. Gauss Mipmap Dual Filter Kawase Ours 5x5

Size Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR

2160p 347.74 ∞ 3.27 74.91 0.49 29.99 0.77 41.02 2.89 40.62 2.04 49.98
1080p 88.39 ∞ 0.84 74.20 0.14 26.43 0.22 37.82 0.79 37.51 0.54 47.38
720p 39.73 ∞ 0.39 74.04 0.07 24.81 0.11 36.24 0.39 35.54 0.26 45.85
540p 22.80 ∞ 0.23 74.05 0.05 23.80 0.08 34.67 0.25 34.32 0.16 44.65

intermediate render target sizes, Dual Filtering is faster than the presented approach, but also less
accurate. Furthermore we found intermediate downsampling followed by upsampling to result
in visible quantization artifacts for moving objects. When images are sampled out-of-bounds we
typically mirror the coordinates at the boundaries. We found that clamping to boundary values
or setting those samples to zero leads to noticeable intensity inconsistencies. However, boundary
handling is supported by hardware and is independent from the actual filter shaders. Note that
for the loss evaluation in the optimization procedure, we generously pad with zeros as mirroring
would lead to artifacts (cf. 4.2).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:14 Kersten Schuster, Philip Trettner, and Leif Kobbelt

Gaussian & Input Mipmap Filtering Dual Filtering Kawase Blur Ours

88.39ms,∞ dB 0.14ms, 26.43 dB 0.22ms, 37.82 dB 0.79ms, 37.51 dB 0.54ms, 47.38 dB

Fig. 8. Comparison of different filtering techniques in terms of quality for a 97 × 97 truncated 3σ -Gaussian
blur. Top row shows filtered results. Bottom row shows input image and differences between ground truth and
respective result. Color varies from 0% (black) to 20% (red) color difference. Measure is Euclidean differences
with image colors interpreted as 3D vectors. Input image size is 1920 × 1080 and render targets have 16 bit
resolution per channel.

4.4 Custom Filter Masks

Figure 9 shows examples for several custom filter masks.
In Figure 10 we evaluate performance and quality of a circular and a hexagonal filter approximated

by our method. The target is a high dynamic range photo (16 bit per color channel) with several
small bright lights. Filtering it with one of the chosen masks creates an out-of-focus effect. Our
circle approximation takes about one millisecond on an NVidia GTX 1080 and is thus almost three
times faster than the method of McGraw [McGraw 2015], which is roughly comparable in quality.
Our filter consists of four passes with 32, 31, 27 and 7 samples, i.e. 97 samples altogether. The
low-rank approximation consists of three separable filters (3 · 2 · 61 fetches) that add up (+3 fetches)
to the final result (369 fetches). We chose k = 3 for the number of ranks (and thus three separable
filters) as a lower amount leads to a drastic decrease in quality and a higher amount would increase
evaluation costs even further. Our hexagonal filter consists of four passes with 32, 32, 27, and 12
samples. The low-rank counterpart performs 53 + 61 texture fetches for each of its three ranks (the
height of the hexagon is less than its width) and additional three fetches for computing the sum,
i.e. 345 fetches in total. In contrast, our hexagon is computed with 103 samples and two passes less.

Figure 11 gives an example for the distribution of individual texture sample positions for a custom
mask. The ground truth is a rasterized version of the character string ł2020ž with 3150 non-zero
pixels. The filter was optimized using the LShape loss (ω = 3) and the five individual passes consist
of 12, 27, 32, 14 and 14 samples.

5 LIMITATIONS AND FUTURE WORK

Regarding Gaussian filtering, our approximations are best suited for medium-sized filters. Our
experiments show that our approximations cannot beat efficiently implemented separated Gaussians
with kernels smaller than approx. 35×35. For very large kernels, the more involved implementation
of recursive Gaussian filters [Nehab and Maximo 2016; Nehab et al. 2011] might be worth the effort.
Our arbitrary filter masks often lack consistency in brightness which is clearly visible in the

impulse responses, but usually less prominent in the filtered results (cf. Figure 9).
We currently only consider filters of the form B1 ∗ . . . ∗ Bn where each Bi is a sparse convolution.

There are different patterns that also result in linear, translation-invariant filters. We believe that
integrating additive components and, for example, allow filters of the form (B1 ∗B2 +B3 ∗B4) ∗B5 +

B6 ∗ B7, is promising. Especially for complex shapes this would allow a łregional decompositionž

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:15

4 passes at 12 samples 4 passes at 32 samples 5 passes at 32 samples

Input Approx. Error Approx. Error Approx. Error

Fig. 9. Examples for approximations of custom filter masks produced by our method. Error images show
absolute difference between ground truths and approximations. Masks have between 1200 and 3400 non-zero
pixels and the used loss function was LShape (ω = 3).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:16 Kersten Schuster, Philip Trettner, and Leif Kobbelt

Impulse Filtered Image Detail (top-right corner)

Input

Exact

62.5ms,∞ dB

Ours

1.10ms, 49.42 dB

Low-Rank
[McGraw 2015]

3.21ms, 50.37 dB

Exact

57.8ms,∞ dB

Ours

1.34ms, 43.48 dB

Low-Rank
[McGraw 2015]

3.02ms, 50.26 dB

Fig. 10. Simulating a circular and a hexagonal out-of-focus effect on a 1080p high dynamic range image.
Filtering was performed directly on the 16 bit input channels. Peak signal-to-noise ratios have been computed
on the final 8 bit images after tone mapping (which are shown here). See Section 4.4 for details. Input image
courtesy Sylvia Schuster.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:17

Fig. 11. Example for a 5-pass filter resembling the characters ł2020ž. Top row shows the individual sample
positions (blue) in each pass while the bottom row shows the filter response after convolving the individual
passes (negative weights displayed in orange). Applying the filter to a 1920 × 1080 RGB target takes 1.028ms

for 8 bit precision and 1.574ms for 16 bit precision.

into parts that can be efficiently convolved. This would also subsume the low-rank approximations
of [McGraw 2015], which produce filters of the form

∑

i B
i
x ∗ Biy . The main challenge is to guide

the optimization into good minima.
While having an LTI filter is extremely beneficial for consistent quality and temporal coherence,

in practice many post-processing effects operate on down-sampled targets to achieve acceptable
performance. It should be straightforward to integrate down-sampling and up-sampling passes
into our filters, though open questions are how to compute the loss (there is no unique impulse
response anymore) and if the samples should depend on the subpixel offset.
The critical aspect for finding our sparse filters is the optimization procedure. While it already

reliably finds filters of high quality and performance, there is still room for improvement. There
are many hyperparameters and while most of them mainly affect convergence speed, it would be
preferable if they could be auto-configured or even self-adapting. For large filters we currently rely
on the domain-specific operations as they drastically speed up convergence. A promising avenue
for future research would be to extend the set of domain-specific operations from Section 3.2.1 or
even automatically discover good filter patterns that, when added as another operation, result in
faster convergence, similar to what can be seen in Fig. 4.
In Table 1 we have given Gaussian filter examples for different performance/quality trade-offs.

However, those were only benchmarked on desktop GPUs. For mobile GPUs, it would be interesting
to take tiled rendering into account when evaluating approximated filters.

Finally, another interesting avenue is to create dynamic filters that can change their shape based
on per-pixel parameters. For example, a Gaussian blur where the blur size can be changed per-pixel.
This could be achieved by incorporating techniques from genetic programming and generate shader
code that automatically positions samples based on the pixel parameters. Especially depth-of-field
would benefit from this extension as the circle of confusion varies per-pixel.

6 CONCLUSION

Inspired by the Kawase blur [Kawase 2003], we present a method for finding multi-pass sparse
convolution filters that approximate given dense filter masks. Our filters are designed to run

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



14:18 Kersten Schuster, Philip Trettner, and Leif Kobbelt

(a) Input scene (+0.00ms) (b) Circle filter (+1.21ms) (c) Heart filter (+1.48ms) (d) Star filter (+0.98ms)

Fig. 12. Screenshots from a dynamic fire simulation scene where the sparks are rendered as bright white
particles (a). The full scene is filtered with our approximations of a circle (b), heart (c), and star (d). The scene
is rendered in 1920 × 1080 and the render targets have 16 bit resolution. The supplemental material contains
a short video of this scene.

on the GPU and exploit the fast bilinear interpolation that the graphics hardware offers. We
find these by solving a constrained optimization problem using a modified parallel tempering
approach. The optimization target depends on the use case and we present loss functions for a łblurž
and a łshape-preservingž case. Our results show that our method consistently finds high-quality
approximations that are often more than an order of magnitude faster than the original masks.
We even improve upon separated versions, when they exist. We also present a series of novel,
high-quality approximations for Gaussian blurs of arbitrary size and various Bokeh shapes. Some
of those are shown in Figure 12 and in a short video in the supplemental material. Besides that, the
supplemental material contains shader code for all shown filters.

ACKNOWLEDGMENTS

This work was partially funded by the European Regional Development Fund, within the łTerra
Mosanaž Interreg Euregio project under the funding code EMR10 and within the łHDV-Messž
project under the funding code EFRE-0500038. Furthermore, this work was partially funded by the
German Research Foundation within the Gottfried Wilhelm Leibniz programme under the funding
code KO 2064/6-1. Additionally, we are grateful to Sylvia Schuster for the permission to use the
photo in Figure 10 and to Julian Schakib for the implementation of the fire simulation in Figure 12.

REFERENCES

Marius Bjùrge. 2015. Bandwidth-efficient Graphics. InACMSIGGRAPH 2015 Courses - MovingMobile Graphics (SIGGRAPH ’15).

Association for Computing Machinery, New York, NY, USA, Article Article 18, 1 pages.

John Canny. 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence

6 (1986), 679ś698.

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics (TOG) 5, 1 (1986), 51ś72.

Phill Djonov. 2012. Bicubic Filtering in Fewer Taps. Shiny Pixels (2012). http://vec3.ca/bicubic-filtering-in-fewer-taps/

Ondirej Fialka and Martin Cadik. 2006. FFT and convolution performance in image filtering on GPU. In Tenth International

Conference on Information Visualisation (IV’06). IEEE, 609ś614.

Kleber Garcia. 2017. Circular separable convolution depth of field. In ACM SIGGRAPH 2017 Talks. 1ś2.

Rafael C Gonzales and Richard E Woods. 2018. Digital Image Processing (4 ed.). Pearson. 153ś162 pages.

Craig Gotsman. 1994. Constant-Time Filtering by Singular Value Decomposition. In Computer Graphics Forum, Vol. 13.

Wiley Online Library, 153ś163.

Peter J Green. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika

82, 4 (1995), 711ś732.

Christopher G Harris, Mike Stephens, et al. 1988. A combined corner and edge detector.. In Alvey vision conference, Vol. 15.

Citeseer, 10ś5244.

Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek Singh, and Anselmo Lastra. 2005. Fast summed-area table

generation and its applications. In Computer Graphics Forum, Vol. 24. Wiley Online Library, 547ś555.

Hyuntae Joo, Soonhyeon Kwon, Sangmin Lee, Elmar Eisemann, and Sungkil Lee. 2016. Efficient ray tracing through aspheric

lenses and imperfect bokeh synthesis. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 99ś105.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.



High-Performance Image Filters via Sparse Approximations 14:19

Masaki Kawase. 2003. Frame Buffer Postprocessing Effects in DOUBLE-STEAL (Wrechless). In Game Developers Conference

2003, 3.

Todd Jerome Kosloff, Justin Hensley, and Brian A Barsky. 2009. Fast filter spreading and its applications. EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2009-54 (2009).

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2009a. Depth-of-field rendering with multiview synthesis. ACM

Transactions on Graphics (TOG) 28, 5 (2009), 1ś6.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2010. Real-time lens blur effects and focus control. ACM Transactions

on Graphics (TOG) 29, 4 (2010), 1ś7.

Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2008. Real-time depth-of-field rendering using point splatting

on per-pixel layers. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1955ś1962.

Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2009b. Real-time depth-of-field rendering using anisotropically

filtered mipmap interpolation. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 453ś464.

Josiah Manson and Scott Schaefer. 2013. Cardinality-constrained texture filtering. ACM Transactions on Graphics (TOG) 32,

4 (2013), 1ś8.

Josiah Manson and Peter-Pike Sloan. 2016. Fast filtering of reflection probes. In Computer Graphics Forum, Vol. 35. Wiley

Online Library, 119ś127.

Pavlos Mavridis and Georgios Papaioannou. 2011. High quality elliptical texture filtering on GPU. In Symposium on

Interactive 3D Graphics and Games. 23ś30.

Joel McCormack, Ronald Perry, Keith I Farkas, and Norman P Jouppi. 1999. Feline: fast elliptical lines for anisotropic texture

mapping. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 243ś250.

Tim McGraw. 2015. Fast Bokeh effects using low-rank linear filters. The Visual Computer 31, 5 (2015), 601ś611.

L McIntosh, Bernhard E Riecke, and Steve DiPaola. 2012. Efficiently Simulating the Bokeh of Polygonal Apertures in a

Post-Process Depth of Field Shader. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1810ś1822.

Johannes Moersch and Howard J Hamilton. 2014. Variable-sized, circular bokeh depth of field effects. In Proceedings of

Graphics Interface 2014. 103ś107.

Diego Nehab and André Maximo. 2016. Parallel recursive filtering of infinite input extensions. ACM Transactions on Graphics

(TOG) 35, 6 (2016), 1ś13.

Diego Nehab, AndréMaximo, Rodolfo S. Lima, and Hugues Hoppe. 2011. GPU-Efficient Recursive Filtering and Summed-Area

Tables. ACM Trans. Graph. 30, 6 (Dec. 2011), 1ś12.

Dan Piponi. 2012. Fast and Exact Convolution with Polygonal Filters. (01 2012).

Michael Potmesil and Indranil Chakravarty. 1982. Synthetic image generation with a lens and aperture camera model. ACM

Transactions on Graphics (TOG) 1, 2 (1982), 85ś108.

Daniel Rákos. 2010. Efficient Gaussian blur with linear sampling. RasterGrid Blogosphere (2010). http://rastergrid.com/blog/

2010/09/efficient-gaussian-blur-with-linear-sampling/

Christian Sigg and Markus Hadwiger. 2005. Fast third-order texture filtering. GPU gems 2 (2005), 313ś329.

Tiago Sousa. 2013. CryEngine 3 Graphics Gems. ACM SIGGRAPH Advances in Real-Time Rendering Course (2013).

Filip Strugar. 2014. An investigation of fast real-time GPU-based image blur algorithms. (2014). https://software.intel.com/

en-us/blogs/2014/07/15/an-investigation-of-fast-real-time-gpu-based-image-blur-algorithms

Swendsen and Wang. 1986. Replica Monte Carlo simulation of spin glasses. Physical review letters 57 21 (1986), 2607ś2609.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing 13, 4 (2004), 600ś612.

John White and Colin Barré-Brisebois. 2011. More Performance! Five Rendering Ideas from Battlefield 3 and Need For

Speed: The Run. ACM SIGGRAPH 2011: Advances in the realtime rendering course (2011).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 14. Publication date: August 2020.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Gaussian and Box Filtering
	2.2 Non-Gaussian Filter Shapes
	2.3 Texture Filtering

	3 Method
	3.1 Sparse GPU Filters
	3.2 Optimization
	3.3 Loss Function
	3.4 Candidate Evaluation

	4 Evaluation
	4.1 Optimization
	4.2 Loss Function
	4.3 Filter Comparison
	4.4 Custom Filter Masks

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

