
Near-Constant Density Wireframe Meshes for 3D Printing
Ole Untzelmann

Visual Computing Institute
RWTH Aachen University

untzelmann@cs.rwth-aachen.de

Leif Kobbelt
Visual Computing Institute
RWTH Aachen University

kobbelt@cs.rwth-aachen.de

Figure 1: Wire mesh generated using the presented algorithm.

ABSTRACT
In fused deposition modeling (FDM) an object is usually constructed
layer-by-layer. Using FDM 3D printers it is however also possible
to extrude �lament directly in 3D space. Using this technique, a
wireframe version of an object can be created by directly printing
the wireframe edges into 3D space. �is way the print time can be
reduced and signi�cant material saving can be achieved.

�is paper presents a technique for wireframe mesh generation
with application in 3D printing. �e proposed technique transforms
triangle meshes into polygonal meshes, from which the edges can
be printed to create the wiremesh. Furthermore, the method is able
to generate near-constant density of lines, even in regions parallel
to the build platform.

CCS CONCEPTS
•Computing methodologies →Mesh models; Mesh geome-
try models;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Symposium on Computational Fabrication, Cambridge, MA
© 2018 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

KEYWORDS
additive manufacturing, digital fabrication, rapid prototyping, FDM

ACM Reference format:
Ole Untzelmann and Leif Kobbelt. 2018. Near-Constant Density Wireframe
Meshes for 3D Printing. In Proceedings of Symposium on Computational
Fabrication, Cambridge, MA, June 17 - 19, 2018, 5 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
�ere are several techniques for additive manufacturing, such as
Selective Laser Sintering (SLS), Stereolithography (SLA), or Fused
Deposition Modeling (FDM). In recent years a lot of a�ordable
3D printers, which use Fused Deposition Modeling (FDM), have
become available on the market. Using FDM machines, it is possible
to move the print head in 3D space while extruding material, which
is not possible for most other techniques. As the printed objects
are printed solid in most cases, slicing so�ware typically makes
no use of this possibility and prints models layer-by-layer. But it
has been shown, that it is possible to print wireframe meshes, by
directly moving the print head in 3D space [Mueller et al. 2014].
In this paper, the process of printing edges directly in 3D space is
called spatial 3D printing.

�e focus in this work is on the creation of wiremesh layouts,
which are suitable for spatial 3D printing. Suitable means that the
generated wire meshes can be printed without collisions, while

Symposium on Computational Fabrication, June 17 - 19, 2018, Cambridge, MA Untzelmann, and Kobbelt

retaining the most important geometric features of the input mesh.
�e contribution of this paper is a novel method for the generation
of wiremesh layouts, which is able to generate contours with near-
constant o�set distance in regions parallel to the build platform.
Based on iso-contours of a scalar �eld de�ned on the input mesh,
our method tranforms the input triangle mesh into a polygonal T-
mesh, from which the edges can be printed to create the wiremesh.

2 RELATEDWORK
WirePrint
�e �rst published approach of printing wireframe meshes directly
in 3D space is WirePrint by Müller et al. [Mueller et al. 2014]. �e in-
put mesh is sliced by a set of planes parallel to the build plate. �ese
planes are adaptively spaced to enhance model quality in regions
with steep overhangs and to handle topology changes between lay-
ers. (i.e. when a single contours splits into multiple contours). �e
generated slices are connected using a zigzag pa�ern. For their test
prints, a cooling system based on air jet was a�ached to the printer,
which allows for very fast cooling of the material. �is cooling is
important for fast wiremesh prints, as the material solidi�es faster.

On-the-�y print
With On-the-�y print, Peng et al. [Peng et al. 2016] presented a
tool, which can create a wiremesh preview print during the design
process. A 5DOF printer is used, which can change the printing
direction during the print. �e wire mesh layout is generated using
a UV parametrization of the mesh surface. Iso-lines are extracted
from the parametrization to generate the edges along one direction.
�en points are sampled along the contour, which are connected to
the points from the contour below, to generate the edges along the
other direction. �eir printer also has a custom cooling solution,
using a pair of atomizing sprays.

Printing arbitrary meshes with a 5DOF Wireframe Printer
Another approach to wire mesh 3D printing was published by Wu
et al. [Wu et al. 2016]. Instead of generating the wiremesh, polygo-
nal meshes are used as input and all edges of the mesh are printed.
A technique was developed, which is able to calculate an ordering
of the edges, such that all edges can be printed without introducing
collisions with the print head. Similar to Peng et al. [Peng et al.
2016] a 5DOF printer was used, which is able to adjust the print-
ing direction. For calculating a valid ordering, a collision graph
is constructed, which implies a partial ordering of the edges. �e
complete ordering is then created by successively adding edges to
the result with respect to the collision graph, until all edges are
added.

3 WIRE MESH GENERATION
Conceptually, our wiremeshes consists of (near-) horizontal con-
tours that are connected by (near-) vertical pillars. When construct-
ing a good wiremesh for spatial 3D printing, we have to observe a
number of constraints and desiderata in order to maximize output
quality and to minimize material consumption. �e constraints
mostly emerge from collision avoidance between the printing head
and previously printed parts of the model while the desiderata cover

aspects like shape approximation as well as uniform distribution
and equal length of mesh edges.

We de�ne the contours of our wiremesh as the iso-contours of a
piecewise linear scalar function f given by its function values f (v)
at the vertices of the input mesh. In Section 3.1 we will explain
how this function can be computed. Depending on the resolution
of the input mesh, the resulting iso-contours can be of rather high
resolution. In Section 3.2 we hence present a simple method to
downsample the contours such that a prescribed minimum distance
between neighboring vertices on the same contour is kept.

Finally, in order to construct the pillars between adjacent con-
tours, we �nd a globally optimal set of connections between con-
tours that are placed at geometrically relevant locations and avoid
high valence nodes (see Section 3.3). �e resulting wiremeshes are
of high quality with the exception of regions around saddle points
of the function f where larger gaps between adjacent contours can
appear. Hence we describe a simple post-process in Section 3.4 that
identi�es saddle points and incorporates them into the wiremesh
for gap closing.

3.1 Contour Field Generation

Figure 2: A contour �eld is generated on the surface of the
mesh, which is used to slice the mesh.

In conventional FDM printing, the 3D model is sliced into planar
horizontal slices. Müller et al. [Mueller et al. 2014] have adapted
this slicing strategy to wiremesh contour generation by de�ning
the slices as iso-contours of a piecewise linear scalar �eld f , with
the z-coordinates of the input mesh vertices assigned as function
values f (v) = p(v)z , where p(v) is the 3D position of the vertex v .
For wiremesh printing, however, this simple contouring strategy is
not well suited since the visible geodesic distance between adjacent
contours depends on (one over the cosine of) the angle between
surface normal and printing (gravity) direction leading to infeasible
results in regions where the surface is nearly horizontal. Addressing
this issue by adapting the vertical distance between contours Müller
et al. [Mueller et al. 2014] solve the problem only for simple classes
of shapes such as surfaces of revolution.

To create a function, which is be�er suited, a vector �eld д(f) ∈
R3 is assigned to the faces of the input mesh. Let n(f) be the
normal of face f . For initialization, all faces which are below a
certain height hz are assigned д(f) = n(f) × ez × n(f), where ez is
the unit z-vector. �e vector �eld is then propagated to all other

Near-Constant Density Wireframe Meshes for 3D PrintingSymposium on Computational Fabrication, June 17 - 19, 2018, Cambridge, MA

faces in the mesh, by rotating the vectors around the common edge.
A�er each face has a vector assigned, the vector �eld is smoothed
using a �xed number of averaging steps. In each iteration the vector
are normalized. Furthermore, the vectors are rotated, such that the
angle α = ∠(д(f),n(f) × ez × n(f)) < αmax . �is makes sure that
later the resulting pillar edges are printable, as the maximal slope
of generated slices is limited.

A�er the vector �eld has been calculated, it is integrated to create
the scalar function f (v) ∈ R, which is assigned to each vertex of the
input mesh. For each triangle, the gradient of f can be expressed
by a linear operator as

∇f = M
©­«
f (vi)
f (vj)
f (vk)

ª®¬ ,
wherevi ,vj andvk are the vertices of the face. And M is de�ned

as
M = (n × ejk ,n × eki ,n × ei j)/(2 ∗A),

where ei j is the edge vector between the vertices vi and vj , and A
is the area of the face.

�e integral function f is calculated as the solution of the least
squares problem

minimize
∑
si ∈F (‖k(si) ∗ д(si) − ∇f ‖

2 + k(si)2)
subject to f (vi) = p(vi)z ∀vi ∈ V with p(v)z < hz

k(si) ≥ 1 ∀si ∈ F
f (vi) ≥ 0 ∀vi ∈ V

Here we introduce an additional scaling factor k(si) for each face
si . We bound k(si) from below, to guarantee an upper bound for
the distance between contours.

3.2 Contour Sampling

Figure 3: �e vertices on each contour are sampled to obtain
a set of collision-free printable vertices.

To generate the contours, the mesh is sliced uniformly along the
iso-lines of the function f (v). �e distance of iso lines is controlled
by a parameter hsl ice . �e edges on the slices are added to the
mesh, by spli�ing the faces accordingly.

All vertices which do not belong to a countour are then removed
from the mesh by using edge collapses. It has to be taken care, that
there are no edges connecting two vertices on the same contour.

A�er having removed the non-contour vertices, the edges between
adjacent slices can be �ipped to reduce the total edge length.

�e contours may contain vertices which are too close to each
other, to be printed without collisions. �erefore, a subset of vertices
have to be selected, such that all vertices have at least the distance
dmin to each other. On the other hand. if too many vertices are
removed, important features of the mesh may be removed.

To select the vertices, the slices are processed individually from
bo�om to top. On each slice the binary labeling problem

maximize
∑

xi ∈Vs
wixi

subject to (∑
x j ∈Ns (xi)

x j) ≤ 1, ∀xi ∈ Vs
xi ∈ {0, 1}, ∀xi ∈ Vs

is solved. Vs is the set of all vertices on the slice s , and Ns (v) =
{x ∈ Vs |‖x −v ‖2 < dmin } is the set of all vertices on the same slice
which are closer thandmin . wi is the weight assigned to each vertex.
�e selected vertices should be located at regions of high curvature,
such that important features of the mesh are retained. Also the
vertices of adjacent slices should be aligned in their position. To
incorporate both properties for selection, the weight wi is chosen
as wi =

1.0+ci
li

. ci models the curvature of vertex i and is set to the
angle between the the two adjacent contour edges. li is the length
of the shortest edge to the slice below, which promotes coherent
positions between vertices on adjacent slices. �e vertices on the
�rst slice have no edges to the slice below, in this case we set li = 1.

All vertices xi which get a value of 1 are kept, the other vertices
are removed by using edge collapses. A�er each iteration, edge
�ips are applied to reduce the total length of all pillar edges. �e
mesh now contains only the vertices which are used in the �nal
wiremesh.

3.3 Pillar Selection

Figure 4: Pillar edges are selected, such that they can be
printed without collision.

If multiple edges are connected to the same vertex, it may hap-
pen, that the print head destroys the edge which was printed �rst,
because it collides with this edge, when printing the second one.
�erefore, it is desirable that each vertex has at most one edge to the

Symposium on Computational Fabrication, June 17 - 19, 2018, Cambridge, MA Untzelmann, and Kobbelt

slice below. On the other hand each vertex needs to be supported
by an edge from the slice below.

To avoid the risk of collision, our solution allows at most one
edge from each vertex to the slice above and at most one edge to
the slice below. Furthermore, the selected pillar edges should have
minimal length. To select the edges, the binary labeling problem

maximize
∑

ei ∈E
1

l (ei)ei +
∑

vj ∈V
(1.0 + c j)vj

subject to (∑
ei ∈Eup (vj)

ei) ≤ 1, ∀vj ∈ V
(∑
ei ∈Edown (vj)

ei) = vj , ∀vj ∈ V
vi ∈ {0, 1}, ∀vi ∈ V
ei ∈ {0, 1}, ∀ei ∈ E

is solved. l(ei) is the length of edge ei . c j is the curvature of
vertex vj , as de�ned for the vertex sampling. Edown (v) is the set of
all adjacent edges of vertexv to the slice below and Eup (v) is the set
of all adjacent edges of vertex v to the slice above. All edges with
ei = 1 are kept in the �nal mesh, all other edges are removed. All
vertices with vj = 0 have no edge to support them. �ese vertices
are moved to the center between the adjacent vertices with vj = 1.

�e objective function assures that vertices with large curvature
and edges with short length are preferred. �e constraints only
allow that at most one edge to the slice above and one edge to the
slice below are selected. Furthermore, the selected vertices must
have an edge to the slice below.

3.4 Saddle Point Handling

Figure 5: �e contour �eld is optimized, such that iso-lines
are close to the saddle points.

If a wire mesh is calculated using f (v), the generated slices may
have relatively large distances to each other in regions where a
saddle point is located. To avoid this, the function values at saddle
points should be very close to a value which is used for iso-line
extraction. �e saddle points are detected by counting the number
of sign changes of f (vi) − f (vj), where vj are the vertices in the
one-ring of the vertex vi . If there are more than two sign changes,
it is a saddle point. We introduce the function q(vi). For the saddle
points this function contains the desired function values. For saddle
points, q(vi) is set to be equal to the next larger value, which is used

Figure 6: Preview and print of the rubber duck model.

for iso-line extraction. �e maximal distance between iso-lines is
not violated if the function values are increased, as the generated
iso-lines have a smaller distance to each other. �e function f (v)
can then be calculated by modifying the least squares problem from
Section 3.1

minimize
∑
si ∈F (‖k(si) ∗ д(si) − ∇f ‖

2 + k(si))2
subject to f (vi) = q(vi) − ϵ ∀vi ∈ V with vi is saddle point

f (vi) = p(vi)z ∀vi ∈ V with p(v)z < hz
k(si) ≥ 1 ∀si ∈ F
f (vi) ≥ 0 ∀vi ∈ V

�e problem is the same as used for the contour �eld generation
in Section 3.1, but with one additional constraint, which assures

Near-Constant Density Wireframe Meshes for 3D PrintingSymposium on Computational Fabrication, June 17 - 19, 2018, Cambridge, MA

that the generated contours are close to the saddle points. But
the saddle points to not lie on the contour, since this would cause
numerical instabilities during the slicing process.

Overall, we �rst solve the problem without this additional con-
straint. �en the saddle point vertices can be determined and the
problem can be solved with this additional constraint.

4 RESULTS
We demonstrate our technique by printing wire meshes of the
Stanford Bunny model and the Rubber Duck model. Both models
were printed at a scale of 10cm height. Resulting prints can be seen
in Figure 1 and Figure 6.

�e wire meshes were printed on a FDM delta printer, with
nozzle diameter of 1mm. Our printer does not have a special cooling
system, such as the printer of Müller et al. [Mueller et al. 2014].
�erefore, we were not able to reproduce their printing speeds.

A�er each pillar edge a delay of 5 seconds is added, to let the
material solidify. Horizontal edges are printed without any delay.
�e Stanford Bunny was printed in 2h 33m, whereas the Rubber
Duck model was printed in 3h 18m. With Cura as slicer for solid
prints, using a layer height of 0.2mm, the same models could be
printed in 3h 24m for the Stanford Bunny and 4h 01m for the Rubber
Duck. Even though the delay a�er each printed edge is large for our
printer, the printing time could be reduced by about 30%. �e bigger
advantage of wiremesh printing is material saving. Compared to
the solid prints, both models consumed less than 10% of material.

5 CONCLUSION
A novel way of generating wiremeshes for spatial 3D printing was
proposed. A function f was introduced, which can generate iso-
lines with nearly constant distance to each other, even in regions
parallel to the build platform. Furthermore a mesh transformation
was proposed which takes a piecewise linear function on the ver-
tices as input and generates an printable polygonal T-mesh from
it.

In future research the use of a 5DOF 3D printer could be inves-
tigated. �is would give more freedom in the orientation of the
guiding vector �eld.

REFERENCES
Stefanie Mueller, Sangha Im, Sera�ma Gurevich, Alexander Teibrich, Lisa P�sterer,

François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed Previews
for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium on User
Interface So�ware and Technology (UIST ’14). ACM, New York, NY, USA, 273–280.
DOI:h�p://dx.doi.org/10.1145/2642918.2647359

Huaishu Peng, Rundong Wu, Steve Marschner, and François Guimbretière. 2016. On-
�e-Fly Print: Incremental Printing While Modelling. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY,
USA, 887–896. DOI:h�p://dx.doi.org/10.1145/2858036.2858106

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-
ing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4,
Article 101 (July 2016), 9 pages. DOI:h�p://dx.doi.org/10.1145/2897824.2925966

http://dx.doi.org/10.1145/2642918.2647359
http://dx.doi.org/10.1145/2858036.2858106
http://dx.doi.org/10.1145/2897824.2925966

	Abstract
	1 Introduction
	2 Related work
	3 Wire Mesh Generation
	3.1 Contour Field Generation
	3.2 Contour Sampling
	3.3 Pillar Selection
	3.4 Saddle Point Handling

	4 Results
	5 Conclusion
	References

